Future directions in myelodysplastic syndromes/neoplasms and acute myeloid leukaemia classification: from blast counts to biology

被引:0
作者
Della Porta, Matteo G. [1 ,2 ]
Bewersdorf, Jan Philipp [3 ,4 ]
Wang, Yu-Hung [5 ,6 ]
Hasserjian, Robert P. [7 ]
机构
[1] IRCCS Humanitas Clin & Res Ctr, Comprehens Canc Ctr, Milan, Italy
[2] Humanitas Univ, Milan, Italy
[3] Yale Univ, Sect Hematol, Dept Internal Med, New Haven, CT 06520 USA
[4] Yale Canc Ctr, New Haven, CT USA
[5] Univ Manchester, Div Canc Sci, Epigenet Haematopoiesis Lab, Manchester, England
[6] Natl Taiwan Univ Hosp, Div Hematol, Taipei, Taiwan
[7] Harvard Med Sch, Dept Pathol, Massachusetts Gen Hosp, Boston, MA USA
关键词
acute myeloid leukaemia; classification; cytogenetics; genetics; myelodysplastic syndrome; next-generation sequencing; HEALTH-ORGANIZATION CLASSIFICATION; INTERMEDIATE-RISK CYTOGENETICS; DE-NOVO; MULTILINEAGE DYSPLASIA; CLONAL HEMATOPOIESIS; TP53; MUTATIONS; SCORING SYSTEM; SYNDROMES MDS; DIAGNOSIS; PROGNOSIS;
D O I
10.1111/his.15353
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone marrow is a key feature that has historically separated MDS from AML and, together with several other morphological parameters, defines distinct disease entities within MDS. Both MDS and AML have recurrent genetic abnormalities that are increasingly influencing their definitions and subclassification. For example, in 2022, two new MDS entities were recognised based on the presence of SF3B1 mutation or bi-allelic TP53 abnormalities. Genomic information is more objective and reproducible than morphological analyses, which are subject to interobserver variability and arbitrary numeric cut-offs. Nevertheless, the integration of genomic data with traditional morphological features in myeloid neoplasm classification has proved challenging by virtue of its sheer complexity; gene expression and methylation profiling also can provide information regarding disease pathogenesis, adding to the complexity. New machine-learning technologies have the potential to effectively integrate multiple diagnostic modalities and improve on historical classification systems. Going forward, the application of machine learning and advanced statistical methods to large patient cohorts can refine future classifications by advancing unbiased and robust previously unrecognised disease subgroups. Future classifications will probably incorporate these newer technologies and higher-level analyses that emphasise genomic disease entities over traditional morphologically defined entities, thus promoting more accurate diagnosis and patient risk stratification.
引用
收藏
页码:158 / 170
页数:13
相关论文
共 78 条
  • [1] [Anonymous], 2024, WHO classification of tumours series, V11
  • [2] International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data
    Arber, Daniel A.
    Orazi, Attilio
    Hasserjian, Robert P.
    Borowitz, Michael J.
    Calvo, Katherine R.
    Kvasnicka, Hans-Michael
    Wang, Sa A.
    Bagg, Adam
    Barbui, Tiziano
    Branford, Susan
    Bueso-Ramos, Carlos E.
    Cortes, Jorge E.
    Dal Cin, Paola
    DiNardo, Courtney D.
    Dombret, Herve
    Duncavage, Eric J.
    Ebert, Benjamin L.
    Estey, Elihu H.
    Facchetti, Fabio
    Foucar, Kathryn
    Gangat, Naseema
    Gianelli, Umberto
    Godley, Lucy A.
    Gokbuget, Nicola
    Gotlib, Jason
    Hellstrom-Lindberg, Eva
    Hobbs, Gabriela S.
    Hoffman, Ronald
    Jabbour, Elias J.
    Kiladjian, Jean-Jacques
    Larson, Richard A.
    Le Beau, Michelle M.
    Loh, Mignon L. -C.
    Lowenberg, Bob
    Macintyre, Elizabeth
    Malcovati, Luca
    Mullighan, Charles G.
    Niemeyer, Charlotte
    Odenike, Olatoyosi M.
    Ogawa, Seishi
    Orfao, Alberto
    Papaemmanuil, Elli
    Passamonti, Francesco
    Porkka, Kimmo
    Pui, Ching-Hon
    Radich, Jerald P.
    Reiter, Andreas
    Rozman, Maria
    Rudelius, Martina
    Savona, Michael R.
    [J]. BLOOD, 2022, 140 (11) : 1200 - 1228
  • [3] The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
    Arber, Daniel A.
    Orazi, Attilio
    Hasserjian, Robert
    Thiele, Jurgen
    Borowitz, Michael J.
    Le Beau, Michelle M.
    Bloomfield, Clara D.
    Cazzola, Mario
    Vardiman, James W.
    [J]. BLOOD, 2016, 127 (20) : 2391 - 2405
  • [4] Baumgartner F, 2024, BLOOD, V143, P1139, DOI 10.1182/blood.2023021199
  • [5] BENNETT JM, 1982, BRIT J HAEMATOL, V51, P189, DOI 10.1111/j.1365-2141.1982.tb08475.x
  • [6] Molecular taxonomy of myelodysplastic syndromes and its clinical implications
    Bernard, Elsa
    Hasserjian, Robert P.
    Greenberg, Peter L.
    Ossa, Juan E. Arango
    Creignou, Maria
    Tuechler, Heinz
    Gutierrez-Abril, Jesus
    Domenico, Dylan
    Medina-Martinez, Juan S.
    Levine, Max
    Liosis, Konstantinos
    Farnoud, Noushin
    Sirenko, Maria
    Jaedersten, Martin
    Germing, Ulrich
    Sanz, Guillermo
    van de Loosdrecht, Arjan A.
    Nannya, Yasuhito
    Kosmider, Olivier
    Follo, Matilde Y.
    Thol, Felicitas
    Zamora, Lurdes
    Pinheiro, Ronald F.
    Pellagatti, Andrea
    Elias, Harold K.
    Haase, Detlef
    Ganster, Christina
    Ades, Lionel
    Tobiasson, Magnus
    Palomo, Laura
    Porta, Matteo Giovanni Della
    Fenaux, Pierre
    Belickova, Monika
    Savona, Michael R.
    Klimek, Virginia M.
    Santos, Fabio P. S.
    Boultwood, Jacqueline
    Kotsianidis, Ioannis
    Santini, Valeria
    Sole, Francesc
    Platzbecker, Uwe
    Heuser, Michael
    Valent, Peter
    Finelli, Carlo
    Voso, Maria Teresa
    Shih, Lee-Yung
    Fontenay, Michaela
    Jansen, Joop H.
    Cervera, Jose
    Gattermann, Norbert
    [J]. BLOOD, 2024, 144 (15) : 1617 - 1632
  • [7] Bernard Elsa, 2022, NEJM Evid, V1, pEVIDoa2200008, DOI 10.1056/EVIDoa2200008
  • [8] Implications ofTP53allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes
    Bernard, Elsa
    Nannya, Yasuhito
    Hasserjian, Robert P.
    Devlin, Sean M.
    Tuechler, Heinz
    Medina-Martinez, Juan S.
    Yoshizato, Tetsuichi
    Shiozawa, Yusuke
    Saiki, Ryunosuke
    Malcovati, Luca
    Levine, Max F.
    Arango, Juan E.
    Zhou, Yangyu
    Sole, Francesc
    Cargo, Catherine A.
    Haase, Detlef
    Creignou, Maria
    Germing, Ulrich
    Zhang, Yanming
    Gundem, Gunes
    Sarian, Araxe
    van de Loosdrecht, Arjan A.
    Jadersten, Martin
    Tobiasson, Magnus
    Kosmider, Olivier
    Follo, Matilde Y.
    Thol, Felicitas
    Pinheiro, Ronald F.
    Santini, Valeria
    Kotsianidis, Ioannis
    Boultwood, Jacqueline
    Santos, Fabio P. S.
    Schanz, Julie
    Kasahara, Senji
    Ishikawa, Takayuki
    Tsurumi, Hisashi
    Takaori-Kondo, Akifumi
    Kiguchi, Toru
    Polprasert, Chantana
    Bennett, John M.
    Klimek, Virginia M.
    Savona, Michael R.
    Belickova, Monika
    Ganster, Christina
    Palomo, Laura
    Sanz, Guillermo
    Ades, Lionel
    Della Porta, Matteo Giovanni
    Smith, Alexandra G.
    Werner, Yesenia
    [J]. NATURE MEDICINE, 2020, 26 (10) : 1549 - +
  • [9] Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes
    Bersanelli, Matteo
    Travaglino, Erica
    Meggendorfer, Manja
    Matteuzzi, Tommaso
    Sala, Claudia
    Mosca, Ettore
    Chiereghin, Chiara
    Di Nanni, Noemi
    Gnocchi, Matteo
    Zampini, Matteo
    Rossi, Marianna
    Maggioni, Giulia
    Termanini, Alberto
    Angelucci, Emanuele
    Bernardi, Massimo
    Borin, Lorenza
    Bruno, Benedetto
    Bonifazi, Francesca
    Santini, Valeria
    Bacigalupo, Andrea
    Voso, Maria Teresa
    Oliva, Esther
    Riva, Marta
    Ubezio, Marta
    Morabito, Lucio
    Campagna, Alessia
    Saitta, Claudia
    Savevski, Victor
    Giampieri, Enrico
    Remondini, Daniel
    Passamonti, Francesco
    Ciceri, Fabio
    Bolli, Niccolo
    Rambaldi, Alessandro
    Kern, Wolfgang
    Kordasti, Shahram
    Sole, Francesc
    Palomo, Laura
    Sanz, Guillermo
    Santoro, Armando
    Platzbecker, Uwe
    Fenaux, Pierre
    Milanesi, Luciano
    Haferlach, Torsten
    Castellani, Gastone
    Della Porta, Matteo G.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (11) : 1223 - +
  • [10] Immunophenotypic Analysis of Acute Megakaryoblastic Leukemia: A EuroFlow Study
    Brouwer, Nienke
    Matarraz, Sergio
    Nierkens, Stefan
    Hofmans, Mattias
    Novakova, Michaela
    da Costa, Elaine Sobral
    Fernandez, Paula
    Bras, Anne E.
    de Mello, Fabiana Vieira
    Mejstrikova, Ester
    Philippe, Jan
    Grigore, Georgiana Emilia
    Pedreira, Carlos E.
    van Dongen, Jacques J. M.
    Orfao, Alberto
    van der Velden, Vincent H. J.
    [J]. CANCERS, 2022, 14 (06)