Evaluation of the mechanisms of rare earth elements extraction from citrate solutions in the recycling of NdFeB magnets

被引:0
|
作者
Rahmati, Soroush [1 ]
Adavodi, Roshanak [1 ]
Romano, Pietro [1 ]
Veglio, Francesco
机构
[1] Univ LAquila, Dept Ind & Informat Engn & Econ, Via Giovanni Gronchi 18, I-67100 Laquila, Italy
关键词
NdFeB magnet; Solvent extraction; Critical metals; Rare earth element; Citrate solution; Selective separation; SOLVENT-EXTRACTION; CYANEX; 572; SEPARATION; RECOVERY; ACID; D2EHPA; LIGHT; KEROSENE; FE(III); METALS;
D O I
10.1016/j.psep.2025.106788
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recycling rare earth elements (REEs) from secondary resources has gained significant attention due to their classification as critical metals by the European Union and their essential role in sustainable development. This study investigates the extraction of light and heavy REEs from citrate leachate solutions derived from end-of-life NdFeB magnets and examines the underlying mechanisms. Key parameters influencing REEs extraction efficiency are evaluated, including extractant and diluent types, extractant concentration, organic-to-aqueous phase volume ratio, contact time, and equilibrium pH. Results revealed that D2EHPA was the most efficient extractant, achieving approximately 100 % recovery for heavy REEs and 88 % for light REEs, with negligible iron extraction within 10 min. The extraction mechanism was found to differ significantly between light and heavy REEs. The equilibrium constant for heavy REEs (Dy, Y, and Tb) was approximately 50 times higher than for light REEs (Nd and Pr), indicating stronger interactions with the extractant. This difference is further supported by the smaller ionic radii of heavy REEs compared to light REEs, which result in higher charge density and stronger coordination preferences for heavy REEs. Moreover, it was observed that the extracted forms vary, with LREEs forming LREE H1.6 Cit.R1.6 (RH)2 complexes and HREEs forming HREE H2.4 Cit.R2.4 (RH)0.4 complexes. These differences contribute to the overall efficiency of the extraction process, with the final oxide product containing approximately 82 % REEs and only 0.1 % iron, demonstrating the high selectivity of the process.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Electrochemical leaching of rare-earth elements from spent NdFeB magnets
    Makarova, Irina
    Soboleva, Ekaterina
    Osipenko, Maria
    Kurilo, Irina
    Laatikainen, Markku
    Repo, Eveliina
    HYDROMETALLURGY, 2020, 192
  • [2] Recycling NdFeB Magnets and Rare Earth Fluorescent Materials from Electronic Waste
    Xu, Qiande
    Wu, Dongxu
    Hu, Wentao
    Zhang, Zhengyang
    Liu, Xinwei
    Yang, Feihua
    Wang, Zhaojia
    JOM, 2024, 76 (03) : 1319 - 1328
  • [3] Selective Extraction of Rare-Earth Elements from NdFeB Magnets by a Room-Temperature Electrolysis Pretreatment Step
    Venkatesan, Prakash
    Vander Hoogerstraete, Tom
    Binnemans, Koen
    Sun, Zhi
    Sietsma, Jilt
    Yang, Yongxiang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (07): : 9375 - 9382
  • [4] Liquid-liquid extraction and separation of light and heavy rare earth elements from chloride solution using a mixture of tertiary amine and phosphinic acid: recycling strategies for NdFeB magnet
    Das, Prasanjit
    Sheik, Abdul Rauf
    Sanjay, Kali
    Devi, Niharbala
    GEOSYSTEM ENGINEERING, 2024,
  • [5] Selective recovery of rare earth elements from acetic leachate of NdFeB magnet by solvent extraction
    Belfqueh, Sahar
    Chapron, Simon
    Giusti, Fabrice
    Pellet-Roastaing, Stephane
    Seron, Alain
    Menad, Nourredine
    Arrachart, Guilhem
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 339
  • [6] Selective acid leaching of rare earth elements from roasted NdFeB magnets
    Laatikainen, Markku
    Makarova, Irina
    Sainio, Tuomo
    Repo, Eveliina
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 278
  • [7] Recovery of rare earth elements from NdFeB magnet by mono- and bifunctional mesoporous silica: Waste recycling strategies and perspectives
    Dudarko, Oksana
    Kobylinska, Natalia
    Kessler, Vadim
    Seisenbaeva, Gulaim
    HYDROMETALLURGY, 2022, 210
  • [8] Selective Recovery of Rare Earth Elements from Dy containing NdFeB Magnets by Chlorination
    Mochizuki, Yuuki
    Tsubouchi, Naoto
    Sugawara, Katsuyasu
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2013, 1 (06): : 655 - 662
  • [9] From NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acid
    Vander Hoogerstraete, Tom
    Blanpain, Bart
    Van Gerven, Tom
    Binnemans, Koen
    RSC ADVANCES, 2014, 4 (109): : 64099 - 64111
  • [10] Effect of pretreatment methods on the selective leaching of rare earth elements from NdFeB permanent magnets using deep eutectic solvents
    Heo, Seojin
    Kim, Rina
    Yoon, Ho -Sung
    Kim, Chul-Joo
    Chung, Kyeong Woo
    Lee, Sujeong
    HYDROMETALLURGY, 2024, 226