Application of Surface-Enhanced Raman Spectroscopy in Head and Neck Cancer Diagnosis

被引:0
|
作者
Yang, Bowen [1 ,2 ,3 ,4 ]
Dai, Xiaobo [1 ,2 ,3 ,4 ]
Chen, Shuai [1 ,2 ,3 ,4 ]
Li, Chunjie [1 ,2 ,3 ,4 ]
Yan, Bing [1 ,2 ,3 ,4 ]
机构
[1] Sichuan Univ, West China Hosp Stomatol, State Key Lab Oral Dis, Chengdu, Peoples R China
[2] Sichuan Univ, West China Hosp Stomatol, Natl Ctr Stomatol, Chengdu 610041, Peoples R China
[3] Sichuan Univ, West China Hosp Stomatol, Natl Clin Res Ctr Oral Dis, Chengdu 610041, Peoples R China
[4] Sichuan Univ, West China Hosp Stomatol, Dept Head & Neck Oncol Surg, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金;
关键词
GOLD NANOPARTICLES; CARCINOMA; MRI; CLASSIFICATION; SENSITIVITY; SCATTERING; STRATEGY; CELLS;
D O I
10.1021/acs.analchem.4c02796
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Surface-enhanced Raman spectroscopy (SERS) has emerged as a crucial analytical tool in the field of oncology, particularly presenting significant challenges for the diagnosis and treatment of head and neck cancer. This Review provides an overview of the current status and prospects of SERS applications, highlighting their profound impact on molecular biology-level diagnosis, tissue-level identification, HNC therapeutic monitoring, and integration with emerging technologies. The application of SERS for single-molecule assays such as epidermal growth factor receptors and PD-1/PD-L1, gene expression analysis, and tumor microenvironment characterization is also explored. This Review showcases the innovative applications of SERS in liquid biopsies such as high-throughput lateral flow analysis for ctDNA quantification and salivary diagnostics, which can offer rapid and highly sensitive assays suitable for immediate detection. At the tissue level, SERS enables cancer cell visualization and intraoperative tumor margin identification, enhancing surgical precision and decision-making. The role of SERS in radiotherapy, chemotherapy, and targeted therapy is examined along with its use in real-time pharmacokinetic studies to monitor treatment response. Furthermore, this Review delves into the synergistic relationship between SERS and artificial intelligence, encompassing machine learning and deep learning algorithms, marking the dawn of a new era in precision oncology. The integration of SERS with genomics, metabolomics, transcriptomics, proteomics, and single-cell omics at the multiomics level will revolutionize our comprehension and management of HNC. This Review offers an overview of the transformative impacts of SERS and examines future directions as well as challenges in this dynamic research field.
引用
收藏
页码:3781 / 3798
页数:18
相关论文
共 50 条
  • [41] Surface-enhanced Raman spectroscopy in forensic analysis
    Holman, Aidan P.
    Kurouski, Dmitry
    REVIEWS IN ANALYTICAL CHEMISTRY, 2024, 43 (01)
  • [42] Surface-Enhanced Raman Spectroscopy for Nitrite Detection
    Yang, Dongchang
    Youden, Brian
    Yu, Naizhen
    Carrier, Andrew J.
    Servos, Mark R.
    Oakes, Ken D.
    Zhang, Xu
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2025, 73 (04) : 2221 - 2235
  • [43] Surface-enhanced Raman spectroscopy investigation on human breast cancer cells
    Jichun Zhu
    Jing Zhou
    Jianyu Guo
    Weiying Cai
    Bo Liu
    Zugeng Wang
    Zhenrong Sun
    Chemistry Central Journal, 7
  • [44] The Variety of Substrates for Surface-enhanced Raman Spectroscopy
    Mikac, L.
    Gotic, M.
    Gebavi, H.
    Ivanda, M.
    PROCEEDINGS OF THE 2017 IEEE 7TH INTERNATIONAL CONFERENCE NANOMATERIALS: APPLICATION & PROPERTIES (NAP), 2017,
  • [45] Surface-enhanced Raman spectroscopy for in vivo biosensing
    Laing, Stacey
    Jamieson, Lauren E.
    Faulds, Karen
    Graham, Duncan
    NATURE REVIEWS CHEMISTRY, 2017, 1 (08)
  • [46] Graphene: A Platform for Surface-Enhanced Raman Spectroscopy
    Xu, Weigao
    Mao, Nannan
    Zhang, Jin
    SMALL, 2013, 9 (08) : 1206 - 1224
  • [47] Surface-enhanced Raman spectroscopy: nonlocal limitations
    Toscano, G.
    Raza, S.
    Xiao, S.
    Wubs, M.
    Jauho, A. -P.
    Bozhevolnyi, S. I.
    Mortensen, N. A.
    OPTICS LETTERS, 2012, 37 (13) : 2538 - 2540
  • [48] Fullerene nanosheets for surface-enhanced Raman spectroscopy
    Yang, Linchangqing
    Li, Yahui
    Liu, Wei
    Zhang, Junhao
    Kong, Qinghong
    Xi, Guangcheng
    CHEMPHYSMATER, 2025, 4 (01): : 86 - 90
  • [49] Microbiological identification by surface-enhanced Raman spectroscopy
    Chauvet, Romain
    Lagarde, Fabienne
    Charrier, Thomas
    Assaf, Ali
    Thouand, Gerald
    Daniel, Philippe
    APPLIED SPECTROSCOPY REVIEWS, 2017, 52 (02) : 123 - 144
  • [50] Nanopillar Filters for Surface-Enhanced Raman Spectroscopy
    Durucan, Onur
    Rindzevicius, Tomas
    Schmidt, Michael Stenbaek
    Matteucci, Marco
    Boisen, Anja
    ACS SENSORS, 2017, 2 (10): : 1400 - 1404