Planting Trees on Sandy Saline Soil Increases Soil Carbon and Nitrogen Content by Altering the Composition of the Microbial Community

被引:0
作者
Shao, Tianyun [1 ]
Yan, Xiao [1 ]
Ji, Kenan [1 ]
Li, Zhuoting [1 ]
Long, Xiaohua [2 ]
Zhang, Yu [2 ]
Zhou, Zhaosheng [1 ]
机构
[1] Nanjing Agr Univ, Coll Resources & Environm Sci, Jiangsu Prov Key Lab Coastal Saline Soil Resources, Nanjing 210095, Peoples R China
[2] Inner Mongolia Acad Agr & Anim Husb Sci, Inst Crop Sci, Hohhot 010031, Peoples R China
来源
AGRONOMY-BASEL | 2024年 / 14卷 / 10期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
sandy saline soil; soil organic carbon; nitrogen; <italic>Ligustrum lucidum</italic>; <italic>Zelkova serrata</italic>; <italic>Hibiscus syriacus</italic>; NITRATE REDUCTASE; ORGANIC-MATTER; BIOMASS; FOREST; MANAGEMENT; DIVERSITY; ENZYMES; GENES; LAND; FRACTIONS;
D O I
10.3390/agronomy14102331
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The remediation and exploitation of sandy saline soils, an underutilized resource, can be enhanced by a greater comprehension of the impact of plants and microorganisms on nutrient cycling. However, there is scant research information on the capacity of different trees and shrubs to improve carbon and nitrogen cycling in saline soils at different depth layers. This study investigated the effect of the trees Zelkova serrata (ZS) and Ligustrum lucidum (LL) and shrub Hibiscus syriacus (HS) on the carbon and nitrogen fractions, soil enzyme activities and microbial communities in sandy saline soils. Planting ZS, LL or HS improved soil quality, increased soil carbon and nitrogen content, changed rhizosphere soil metabolites and enhanced soil enzyme activities and microbial abundance and diversity. Compared to values in the bare soil, the highest reduction in soil salinity was noticed under Zelkova serrata (49%) followed by Ligustrum lucidum (48%). The highest increase in total soil organic carbon (SOC) was noted under Ligustrum lucidum and Hibiscus syriacus (62% each), followed by Zelkova serrata (43%), as compared to levels in the bare soil. In the 0-10 cm soil layer, the total N in bare soil was 298 +/- 1.48 mg/kg, but after planting LL, ZS or HS, the soil total N increased by 101%, 56% and 40%, respectively. Compared with that of the bare soil, cbbL sequencing showed that the relative abundance of Bradyrhizobium increased and that of Bacillus decreased due to planting. Similarly, the nifH sequencing results indicated that the relative abundance of Bradyrhizobium and Motiliproteu increased and that of Desulfuromonas and Geoalkalibacter decreased. These findings suggested that soil microorganisms could play a pivotal role in the carbon and nitrogen cycle of saline soils by influencing the content of soil carbon and nitrogen.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Sowing crop affects soil microbial necromass carbon via altering soil fungal community structure in a macadamia-based agroforestry system
    Xu, Fandi
    Chen, Jianying
    Yang, Yuchun
    Wu, Jiangchong
    Li, Cong
    Chen, Yanxuan
    Wan, Xiaoli
    Luo, Guofa
    Zhang, Yanping
    Li, Shuaifeng
    Su, Jianrong
    ECOLOGICAL INDICATORS, 2023, 157
  • [32] Effect of termite mounds on soil microbial communities and microbial processes: Implications for soil carbon and nitrogen cycling
    Chen, Chunfeng
    Singh, Ashutosh Kumar
    Yang, Bin
    Wang, Haofei
    Liu, Wenjie
    GEODERMA, 2023, 431
  • [33] Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates
    de Graaff, Marie-Anne
    Classen, Aimee T.
    Castro, Hector F.
    Schadt, Christopher W.
    NEW PHYTOLOGIST, 2010, 188 (04) : 1055 - 1064
  • [34] Plant diversity increases soil microbial activity and soil carbon storage
    Lange, Markus
    Eisenhauer, Nico
    Sierra, Carlos A.
    Bessler, Holger
    Engels, Christoph
    Griffiths, Robert I.
    Mellado-Vazquez, Perla G.
    Malik, Ashish A.
    Roy, Jacques
    Scheu, Stefan
    Steinbeiss, Sibylle
    Thomson, Bruce C.
    Trumbore, Susan E.
    Gleixner, Gerd
    NATURE COMMUNICATIONS, 2015, 6
  • [35] Straw alters the soil organic carbon composition and microbial community under different tillage practices in a meadow soil in Northeast China
    Li, Yu-mei
    Duan, Yan
    Wang, Gen-lin
    Wang, An-qi
    Shao, Guang-zhong
    Meng, Xiang-hai
    Hu, Hui-ying
    Zhang, Dong-mei
    SOIL & TILLAGE RESEARCH, 2021, 208
  • [36] Soil microbial respiration does not respond to nitrogen deposition but increases with latitude
    Wang, Qingkui
    Zhao, Xuechao
    Liu, Shengen
    Wang, Qinggui
    Xu, Zhuwen
    Lu, Xiaotao
    Zhang, Wei
    Tian, Peng
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2024, 75 (05)
  • [37] Response of soil microbial community structure, carbon and nitrogen cycling to drying and rewetting
    Matthews, Kate E.
    Facelli, Jose M.
    Cavagnaro, Timothy R.
    APPLIED SOIL ECOLOGY, 2023, 192
  • [38] Is vegetation composition or soil chemistry the best predictor of the soil microbial community?
    Mitchell, Ruth J.
    Hester, Alison J.
    Campbell, Colin D.
    Chapman, Stephen J.
    Cameron, Clare M.
    Hewison, Richard L.
    Potts, Jackie M.
    PLANT AND SOIL, 2010, 333 (1-2) : 417 - 430
  • [39] Boron in soil: The impacts on the biomass, composition and activity of the soil microbial community
    Vera, A.
    Moreno, J. L.
    Garcia, C.
    Morais, D.
    Bastida, F.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 685 : 564 - 573
  • [40] Agricultural Management and Labile Carbon Additions Affect Soil Microbial Community Structure and Interact with Carbon and Nitrogen Cycling
    Berthrong, Sean T.
    Buckley, Daniel H.
    Drinkwater, Laurie E.
    MICROBIAL ECOLOGY, 2013, 66 (01) : 158 - 170