Synergistic effects of carbon and nitrogen vacancies in carbon nitride for photocatalytic H2 production and tetracycline oxidation

被引:3
|
作者
Chang, Lee-Lee [1 ]
Hu, Chechia [2 ,3 ]
Wang, Chun-Yao [2 ]
Chen, Wen-Ling [4 ]
Yamada, Kanta [5 ]
Wu, An-Yu [2 ]
Yoshida, Masaaki [5 ,6 ]
Chien, Szu-Chia [4 ]
Tung, Kuo-Lun [1 ]
机构
[1] Natl Taiwan Univ, Dept Chem Engn, Taipei City 106, Taiwan
[2] Natl Taiwan Univ Sci & Technol, Sustainable Electrochem Energy Dev Ctr SEED, Dept Chem Engn, Taipei City 106, Taiwan
[3] Chung Yuan Christian Univ, R&D Ctr Membrane Technol, Taoyuan City 320, Taiwan
[4] Natl Cent Univ, Dept Chem & Mat Engn, Taoyuan City 320, Taiwan
[5] Yamaguchi Univ, Grad Sch Sci & Technol Innovat, Appl Chem, Ube, Yamaguchi 7558611, Japan
[6] Yamaguchi Univ, Blue Energy Ctr SGE Technol Best, 2-16-1 Tokiwadai, Ube, Yamaguchi 7558611, Japan
关键词
Vacancy; Photocatalysis; Tetracycline; H-2-evolution; g-C3N4; TOTAL-ENERGY CALCULATIONS; G-C3N4; NANOSHEETS; RATIONAL DESIGN; PHOSPHORUS; DEFECTS; NO;
D O I
10.1016/j.seppur.2024.129346
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Carbon nitride exhibits mediocre activity in photocatalytic environmental remediation and energy conversion due to its limited light absorption and sluggish charge transfer. Most studies have focused on structural engineering with either a single carbon or nitrogen defect, and insufficient attention has been paid to the effects of various defects within the bulk structure of carbon nitride on its photocatalytic activity. In this study, we prepared CN via thermal polymerization using different precursors, including melamine, 3-amino-1,2,4-triazole, 5aminotetrazole, and a mixture of these compounds to explore the synergistic effects of carbon/nitrogen vacancies. All samples exhibited both carbon and nitrogen defects, which were correlated with the energy band gaps and sub-energy band levels, as well as photocatalytic activity for H-2 evolution and tetracycline degradation. Among these samples, melamine-derived CN exhibited the fewest carbon/nitrogen defects and showed an apparent quantum yield of 7.6 % under light irradiation (lambda lambda = 420 nm) for photocatalytic H-2 evolution. This sample was also used for tetracycline degradation and exhibited high activity and recyclability. A Pt-loaded melamine-derived CN sample was fabricated in a plate reactor for photocatalytic H-2 evolution under sunlight. H-2 evolution was correlated with sunlight intensity, revealing that our reactor holds promise for the potential large-scale production of H-2 under daylight irradiation.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Central nitrogen vacancies in polymeric carbon nitride for boosted photocatalytic H2O2 production
    Lin, Feng
    Wang, Tong
    Ren, Zhujuan
    Cai, Xiaorong
    Wang, Yulin
    Chen, Jun
    Wang, Jianghao
    Zang, Shaohong
    Mao, Feifei
    Lv, Liang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 636 : 223 - 229
  • [12] Accurate engineering of hexagonal hollow carbon nitride with carbon vacancies: enhanced photocatalytic H2 evolution and its mechanism
    Chen, Xueru
    Li, Xin
    Li, Xue
    Lu, Huimin
    Wang, Lei
    Liu, Qianqian
    Li, Hongping
    Ding, Jing
    Wan, Hui
    Guan, Guofeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (36) : 20664 - 20675
  • [13] Progress on enhancing the charge separation efficiency of carbon nitride for robust photocatalytic H2 production
    Shao, Mengmeng
    Shao, Yangfan
    Pan, Hui
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (15) : 11243 - 11262
  • [14] Graphitic carbon nitride nanoribbon for enhanced visible-light photocatalytic H2 production
    Bu, Xiuming
    Bu, Yu
    Yang, Siwei
    Sun, Feng
    Tian, Linfan
    Peng, Zheng
    He, Peng
    Sun, Jing
    Huang, Tao
    Wang, Xianying
    Ding, Guqiao
    Yang, Junhe
    Xie, Xiaoming
    RSC ADVANCES, 2016, 6 (113): : 112210 - 112214
  • [15] Graphitic carbon nitride with thermally-induced nitrogen defects: an efficient process to enhance photocatalytic H2 production performance
    Dong, Guangzhi
    Wen, Yun
    Fan, Huiqing
    Wang, Chao
    Cheng, Zhenxiang
    Zhang, Mingchang
    Ma, Jiangwei
    Zhang, Shujun
    RSC ADVANCES, 2020, 10 (32) : 18632 - 18638
  • [16] Template-Assisted Surface Hydrophilicity of Graphitic Carbon Nitride for Enhanced Photocatalytic H2 Evolution
    Li, Kunwei
    Bao, Liyan
    Cao, Shuaisheng
    Xue, Yunfeng
    Yan, Shicheng
    Gao, Honglin
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (11) : 12965 - 12973
  • [17] Enhanced Photocatalytic Activity of Aerogel Composed of Crooked Carbon Nitride Nanolayers with Nitrogen Vacancies
    Zhang, Bing
    Zhao, Tian-Jian
    Wang, Hong-Hui
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (38) : 34922 - 34929
  • [18] Carbon nanosheet facilitated charge separation and transfer between molybdenum carbide and graphitic carbon nitride toward efficient photocatalytic H2 production
    Zou, Yajun
    Ma, Dandan
    Sun, Diankun
    Mao, Siman
    He, Chi
    Wang, Zeyan
    Ji, Xin
    Shi, Jian-Wen
    APPLIED SURFACE SCIENCE, 2019, 473 : 91 - 101
  • [19] Graphitic Carbon Nitride with Carbon Vacancies for Photocatalytic Degradation of Bisphenol A
    Liang, Xiaofei
    Wang, Guanlong
    Dong, Xiaoli
    Wang, Guowen
    Ma, Hongchao
    Zhang, Xiufang
    ACS APPLIED NANO MATERIALS, 2019, 2 (01) : 517 - 524
  • [20] Synergistic silver doping and N vacancy promoting photocatalytic performances of carbon nitride for pollutant oxidation and hydrogen production
    Kong, Yifan
    Li, Degang
    Zhang, Chengxu
    Han, Wenyuan
    Xue, Yan
    Zhang, Weimin
    Sun, Hongqi
    Wang, Shaobin
    Duan, Xiaoguang
    CHEMICAL ENGINEERING JOURNAL, 2024, 479