P2-LOAM: LiDAR Odometry and Mapping with Pole-Plane Landmark

被引:0
作者
Xu, Jianhong [1 ]
Chen, Weinan [1 ]
Mao, Shixin [2 ]
Guan, Yisheng [1 ]
Zhu, Haifei [1 ]
机构
[1] Guangdong Univ Technol, Sch Electromech Engn, Biomimet & Intelligent Robot Lab BIRL, Guangzhou, Guangdong, Peoples R China
[2] Jiutian Innovat Guangdong Intelligent Technol Co, Foshan 528299, Peoples R China
来源
2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024 | 2024年
基金
中国国家自然科学基金;
关键词
SLAM; pole landmark; SLAM;
D O I
10.1109/ICIEA61579.2024.10665090
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For spatial perception, object-level SLAM (Simultaneous Localization and Mapping) has shown an advantage by leveraging semantic information to comprehend unknown environments. Poles are considered significant semantic landmark objects in urban roads and man-made constructions like stone pillars, street light lamps, and tree trunks. The rich pole landmarks enhance to the robustness and accuracy of SLAM. In this paper, we propose a LiDAR-based object-level SLAM named P-2-LOAM, which simultaneously estimates the pose and constructs a sparse pole landmark map. We propose a multi-RANSAC method for pole segmentation and estimate the parametric representation of pole objects in various scenes. Based on the segmented pole outcome, a coarse-to-fine data association for the pole object method is designed. Furthermore, a plane-assisted cost function for the pole landmark residual construction is developed. We demonstrate the accuracy and robustness of the proposed method in public datasets and real-world experiments.
引用
收藏
页数:7
相关论文
共 31 条
[1]   A review of high-definition map creation methods for autonomous driving [J].
Bao, Zhibin ;
Hossain, Sabir ;
Lang, Haoxiang ;
Lin, Xianke .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 122
[2]   GenPa-SLAM: Using a General Panoptic Segmentation for a Real-Time Semantic Landmark SLAM [J].
Beer, Lukas ;
Luettel, Thorsten ;
Wuensche, Hans-Joachim .
2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, :873-879
[3]  
Behley J, 2018, ROBOTICS: SCIENCE AND SYSTEMS XIV
[4]   LiDAR-Based Object-Level SLAM for Autonomous Vehicles [J].
Cao, Bingyi ;
Mendoza, Ricardo Carrillo ;
Philipp, Andreas ;
Gohring, Daniel .
2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, :4397-4404
[5]   University of Michigan North Campus long-term vision and lidar dataset [J].
Carlevaris-Bianco, Nicholas ;
Ushani, Arash K. ;
Eustice, Ryan M. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2016, 35 (09) :1023-1035
[6]   SLOAM: Semantic Lidar Odometry and Mapping for Forest Inventory [J].
Chen, Steven W. ;
Nardari, Guilherme, V ;
Lee, Elijah S. ;
Qu, Chao ;
Liu, Xu ;
Romero, Roseli Ap Francelin ;
Kumar, Vijay .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) :612-619
[7]  
Chen XYL, 2019, IEEE INT C INT ROBOT, P4530, DOI 10.1109/IROS40897.2019.8967704
[8]   Online pole segmentation on range images for long-term LiDAR localization in urban environments [J].
Dong, Hao ;
Chen, Xieyuanli ;
Sarkka, Simo ;
Stachniss, Cyrill .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2023, 159
[9]   PL-SLAM: A Stereo SLAM System Through the Combination of Points and Line Segments [J].
Gomez-Ojeda, Ruben ;
Moreno, Francisco-Angel ;
Zuniga-Noel, David ;
Scaramuzza, Davide ;
Gonzalez-Jimenez, Javier .
IEEE TRANSACTIONS ON ROBOTICS, 2019, 35 (03) :734-746
[10]   Robust Localization for Intelligent Vehicles Based on Pole-Like Features Using the Point Cloud [J].
Li, Liang ;
Yang, Ming ;
Weng, Lihong ;
Wang, Chunxiang .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (02) :1095-1108