Strengthening incomplete multi-view clustering: An attention contrastive learning method

被引:0
|
作者
Hou, Shudong [1 ]
Guo, Lanlan [1 ]
Wei, Xu [1 ]
机构
[1] Anhui Univ Technol, Sch Comp Sci & Technol, Maanshan 243002, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Incomplete multi-view clustering; Cross-view encoder; Contrastive learning; High confidence; Graph constraint;
D O I
10.1016/j.imavis.2025.105493
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Incomplete multi-view clustering presents greater challenges than traditional multi-view clustering. In recent years, significant progress has been made in this field, multi-view clustering relies on the consistency and integrity of views to ensure the accurate transmission of data information. However, during the process of data collection and transmission, data loss is inevitable, leading to partial view loss and increasing the difficulty of joint learning on incomplete multi-view data. To address this issue, we propose a multi-view contrastive learning framework based on the attention mechanism. Previous contrastive learning mainly focused on the relationships between isolated sample pairs, which limited the robustness of the method. Our method selects positive samples from both global and local perspectives by utilizing the nearest neighbor graph to maximize the correlation between local features and latent features of each view. Additionally, we use a cross-view encoder network with self-attention structure to fuse the low dimensional representations of each view into a joint representation, and guide the learning of the joint representation through a high confidence structure. Furthermore, we introduce graph constraint learning to explore potential neighbor relationships among instances to facilitate data reconstruction. The experimental results on six multi-view datasets demonstrate that our method exhibits significant effectiveness and superiority compared to existing methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Incomplete multi-view clustering based on information fusion with self-supervised learning
    Cai, Yilong
    Shu, Qianyu
    Zhou, Zhengchun
    Meng, Hua
    INFORMATION FUSION, 2025, 117
  • [42] Incomplete multi-view clustering based on hypergraph
    Chen, Jin
    Xu, Huafu
    Xue, Jingjing
    Gao, Quanxue
    Deng, Cheng
    Lv, Ziyu
    INFORMATION FUSION, 2025, 117
  • [43] Learning missing instances in latent space for incomplete multi-view clustering
    Yu, Zhiqi
    Ye, Mao
    Xiao, Siying
    Tian, Liang
    KNOWLEDGE-BASED SYSTEMS, 2022, 250
  • [44] Learning Common Semantics via Optimal Transport for Contrastive Multi-View Clustering
    Zhang, Qian
    Zhang, Lin
    Song, Ran
    Cong, Runmin
    Liu, Yonghuai
    Zhang, Wei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4501 - 4515
  • [45] Triple-Granularity Contrastive Learning for Deep Multi-View Subspace Clustering
    Wang, Jing
    Feng, Songhe
    Lyu, Gengyu
    Gu, Zhibin
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2994 - 3002
  • [46] Structure-guided feature and cluster contrastive learning for multi-view clustering
    Shu, Zhenqiu
    Li, Bin
    Mao, Cunli
    Gao, Shengxiang
    Yu, Zhengtao
    NEUROCOMPUTING, 2024, 582
  • [47] Deep Contrastive Multi-View Subspace Clustering With Representation and Cluster Interactive Learning
    Yu, Xuejiao
    Jiang, Yi
    Chao, Guoqing
    Chu, Dianhui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (01) : 188 - 199
  • [48] DealMVC: Dual Contrastive Calibration for Multi-view Clustering
    Yang, Xihong
    Jin Jiaqi
    Wang, Siwei
    Liang, Ke
    Liu, Yue
    Wen, Yi
    Liu, Suyuan
    Zhou, Sihang
    Liu, Xinwang
    Zhu, En
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 337 - 346
  • [49] Deep contrastive coordinated multi-view consistency clustering
    Shi, Fuhao
    Wan, Shaohua
    Wu, Shengli
    Wei, Hui
    Lu, Hu
    MACHINE LEARNING, 2025, 114 (03)
  • [50] Graph Structure Aware Contrastive Multi-View Clustering
    Chen, Rui
    Tang, Yongqiang
    Cai, Xiangrui
    Yuan, Xiaojie
    Feng, Wenlong
    Zhang, Wensheng
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (03) : 260 - 274