Diabatic error and propagation of Majorana zero modes in interacting quantum dots systems

被引:0
作者
Pandey, Bradraj [1 ,2 ]
Gupta, Gaurav Kumar [3 ,4 ]
Alvarez, Gonzalo [5 ]
Okamoto, Satoshi [2 ]
Dagotto, Elbio [1 ,2 ]
机构
[1] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[3] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA
[4] Univ Houston, Dept Phys, Houston, TX 77204 USA
[5] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA
关键词
Coulomb interactions - Nanocrystals - Quantum computers - Quantum optics;
D O I
10.1103/PhysRevB.111.104311
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Motivated by recent experimental progress in realizing Majorana zero modes (MZMs) using quantum dot systems, we investigate the diabatic errors associated with the movement of those MZMs. The movement is achieved by tuning time-dependent gate potentials applied to individual quantum dots, effectively creating a moving potential wall. To probe the optimized movement of MZMs, we calculate the experimentally accessible time-dependent fidelity and local density-of-states using many-body time-dependent numerical methods. Our analysis reveals that an optimal potential wall height is crucial to preserve the well-localized nature of the MZM during its movement. Moreover, we analyze diabatic errors in realistic quantum-dot systems, incorporating the effects of repulsive Coulomb interactions and disorder in both hopping and pairing terms. Additionally, we provide a comparative study of diabatic errors arising from the simultaneous versus sequential tuning of multiple gates during the MZMs movement. Finally, we estimate the timescale required for MZM transfer in a sixquantum-dot system, demonstrating that MZM movement is feasible and can be completed well within the qubit's operational lifetime in practical quantum-dot setups.
引用
收藏
页数:10
相关论文
共 54 条
[11]   Disorder-induced zero-bias peaks in Majorana nanowires [J].
Das Sarma, Sankar ;
Pan, Haining .
PHYSICAL REVIEW B, 2021, 103 (19)
[12]   Majorana zero modes and topological quantum computation [J].
Das Sarma, Sankar ;
Freedman, Michael ;
Nayak, Chetan .
NPJ QUANTUM INFORMATION, 2015, 1
[13]   Majorana bound state in a coupled quantum-dot hybrid-nanowire system [J].
Deng, M. T. ;
Vaitiekenas, S. ;
Hansen, E. B. ;
Danon, J. ;
Leijnse, M. ;
Flensberg, K. ;
Nygard, J. ;
Krogstrup, P. ;
Marcus, C. M. .
SCIENCE, 2016, 354 (6319) :1557-1562
[14]   Realization of a minimal Kitaev chain in coupled quantum dots [J].
Dvir, Tom ;
Wang, Guanzhong ;
van Loo, Nick ;
Liu, Chun-Xiao ;
Mazur, Grzegorz P. ;
Bordin, Alberto ;
ten Haaf, Sebastiaan L. D. ;
Wang, Ji-Yin ;
van Driel, David ;
Zatelli, Francesco ;
Li, Xiang ;
Malinowski, Filip K. ;
Gazibegovic, Sasa ;
Badawy, Ghada ;
Bakkers, Erik P. A. M. ;
Wimmer, Michael ;
Kouwenhoven, Leo P. .
NATURE, 2023, 614 (7948) :445-+
[15]  
Fishman M., 2022, SciPost Phys. Codebases, V4, P004, DOI [DOI 10.21468/SCIPOSTPHYSCODEB.4, 10. 21468/SciPostPhysCodeb.4]
[16]   Majorana Edge States in Interacting One-Dimensional Systems [J].
Gangadharaiah, Suhas ;
Braunecker, Bernd ;
Simon, Pascal ;
Loss, Daniel .
PHYSICAL REVIEW LETTERS, 2011, 107 (03)
[17]   DEGREE OF APPROXIMATE VALIDITY OF ADIABATIC INVARIANCE IN QUANTUM MECHANICS [J].
GARRIDO, LM ;
SANCHO, FJ .
PHYSICA, 1962, 28 (06) :553-&
[18]   The 1D Ising model and the topological phase of the Kitaev chain [J].
Greiter, Martin ;
Schnells, Vera ;
Thomale, Ronny .
ANNALS OF PHYSICS, 2014, 351 :1026-1033
[19]   Interaction-induced topological phase transition and Majorana edge states in low-dimensional orbital-selective Mott insulators [J].
Herbrych, J. ;
Sroda, M. ;
Alvarez, G. ;
Mierzejewski, M. ;
Dagotto, E. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[20]   Optimal control of Majorana zero modes [J].
Karzig, Torsten ;
Rahmani, Armin ;
von Oppen, Felix ;
Refael, Gil .
PHYSICAL REVIEW B, 2015, 91 (20)