Diabatic error and propagation of Majorana zero modes in interacting quantum dots systems

被引:0
作者
Pandey, Bradraj [1 ,2 ]
Gupta, Gaurav Kumar [3 ,4 ]
Alvarez, Gonzalo [5 ]
Okamoto, Satoshi [2 ]
Dagotto, Elbio [1 ,2 ]
机构
[1] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[3] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA
[4] Univ Houston, Dept Phys, Houston, TX 77204 USA
[5] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA
关键词
Coulomb interactions - Nanocrystals - Quantum computers - Quantum optics;
D O I
10.1103/PhysRevB.111.104311
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Motivated by recent experimental progress in realizing Majorana zero modes (MZMs) using quantum dot systems, we investigate the diabatic errors associated with the movement of those MZMs. The movement is achieved by tuning time-dependent gate potentials applied to individual quantum dots, effectively creating a moving potential wall. To probe the optimized movement of MZMs, we calculate the experimentally accessible time-dependent fidelity and local density-of-states using many-body time-dependent numerical methods. Our analysis reveals that an optimal potential wall height is crucial to preserve the well-localized nature of the MZM during its movement. Moreover, we analyze diabatic errors in realistic quantum-dot systems, incorporating the effects of repulsive Coulomb interactions and disorder in both hopping and pairing terms. Additionally, we provide a comparative study of diabatic errors arising from the simultaneous versus sequential tuning of multiple gates during the MZMs movement. Finally, we estimate the timescale required for MZM transfer in a sixquantum-dot system, demonstrating that MZM movement is feasible and can be completed well within the qubit's operational lifetime in practical quantum-dot setups.
引用
收藏
页数:10
相关论文
共 54 条
[1]   Milestones Toward Majorana-Based Quantum Computing [J].
Aasen, David ;
Hell, Michael ;
Mishmash, Ryan V. ;
Higginbotham, Andrew ;
Danon, Jeroen ;
Leijnse, Martin ;
Jespersen, Thomas S. ;
Folk, Joshua A. ;
Marcus, Charles M. ;
Flensberg, Karsten ;
Alicea, Jason .
PHYSICAL REVIEW X, 2016, 6 (03)
[2]   Non-Abelian statistics and topological quantum information processing in 1D wire networks [J].
Alicea, Jason ;
Oreg, Yuval ;
Refael, Gil ;
von Oppen, Felix ;
Fisher, Matthew P. A. .
NATURE PHYSICS, 2011, 7 (05) :412-417
[3]   The density matrix renormalization group for strongly correlated electron systems: A generic implementation [J].
Alvarez, G. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (09) :1572-1578
[4]   Dynamics of Majorana-based qubits operated with an array of tunable gates [J].
Bauer, Bela ;
Karzig, Torsten ;
Mishmash, Ryan V. ;
Antipov, Andrey E. ;
Alicea, Jason .
SCIPOST PHYSICS, 2018, 5 (01)
[5]  
Bordin A, 2024, Arxiv, DOI arXiv:2402.19382
[6]   Crossed Andreev Reflection and Elastic Cotunneling in Three Quantum Dots Coupled by Superconductors [J].
Bordin, Alberto ;
Li, Xiang ;
van Driel, David ;
Wolff, Jan Cornelis ;
Wang, Qingzhen ;
ten Haaf, Sebastiaan L. D. ;
Wang, Guanzhong ;
van Loo, Nick ;
Kouwenhoven, Leo P. ;
Dvir, Tom .
PHYSICAL REVIEW LETTERS, 2024, 132 (05)
[7]   Nonadiabatic effects in the braiding of non-Abelian anyons in topological superconductors [J].
Cheng, Meng ;
Galitski, Victor ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2011, 84 (10)
[8]   Error generation and propagation in Majorana-based topological qubits [J].
Conlon, A. ;
Pellegrino, D. ;
Slingerland, J. K. ;
Dooley, S. ;
Kells, G. .
PHYSICAL REVIEW B, 2019, 100 (13)
[9]   Protocol Discovery for the Quantum Control of Majoranas by Differentiable Programming and Natural Evolution Strategies [J].
Coopmans, Luuk ;
Luo, Di ;
Kells, Graham ;
Clark, Bryan K. ;
Carrasquilla, Juan .
PRX QUANTUM, 2021, 2 (02)
[10]  
Das Sarma S, 2023, Arxiv, DOI [arXiv:2305.07007, 10.1103/PhysRevB.108.085416, 10.48550/arXiv.2305.07007, DOI 10.48550/ARXIV.2305.07007]