ResMT: A hybrid CNN-transformer framework for glioma grading with 3D MRI

被引:1
|
作者
Cui, Honghao [1 ]
Ruan, Zhuoying [2 ]
Xu, Zhijian [1 ]
Luo, Xiao [1 ]
Dai, Jian [1 ]
Geng, Daoying [1 ,2 ]
机构
[1] Fudan Univ, Acad Engn & Technol, Shanghai 200433, Peoples R China
[2] Fudan Univ, Huashan Hosp, Dept Radiol, Shanghai 200040, Peoples R China
关键词
Glioma grading; Deep learning; Hybrid architecture; Attention mechanisms; Transformer; Magnetic resonance imaging; CENTRAL-NERVOUS-SYSTEM; NETWORK;
D O I
10.1016/j.compeleceng.2024.109745
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate grading of gliomas is crucial for treatment strategies and prognosis. While convolutional neural networks (CNNs) have proven effective in classifying medical images, they struggle with capturing long-range dependencies among pixels. Transformer-based networks can address this issue, but CNN-based methods often perform better when trained on small datasets. Additionally, tumor segmentation is essential for classification models, but training an additional segmentation model significantly increases workload. To address these challenges, we propose ResMT, which combines CNN and transformer architectures for glioma grading, extracting both local and global features efficiently. Specifically, we designed a spatial residual module (SRM) where a 3D CNN captures glioma's volumetric complexity, and Swin UNETR, a pre-trained segmentation model, enhances the network without extra training. Our model also includes a multi-plane channel and spatial attention module (MCSA) to refine the analysis by focusing on critical features across multiple planes (axial, coronal, and sagittal). Transformer blocks establish long-range relationships among planes and slices. We evaluated ResMT on the BraTs19 dataset, comparing it with baselines and state-of-the-art models. Results demonstrate that ResMT achieves the highest prediction performance with an AUC of 0.9953, highlighting hybrid CNN-transformer models' potential for 3D MRI classification.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] An Attention-Guided CNN Framework for Segmentation and Grading of Glioma Using 3D MRI Scans
    Tripathi, Prasun Chandra
    Bag, Soumen
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (03) : 1890 - 1904
  • [2] Hybrid CNN-transformer network for efficient CSI feedback
    Zhao, Ruohan
    Liu, Ziang
    Song, Tianyu
    Jin, Jiyu
    Jin, Guiyue
    Fan, Lei
    PHYSICAL COMMUNICATION, 2024, 66
  • [3] HCformer: Hybrid CNN-Transformer for LDCT Image Denoising
    Yuan, Jinli
    Zhou, Feng
    Guo, Zhitao
    Li, Xiaozeng
    Yu, Hengyong
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (05) : 2290 - 2305
  • [4] CNN-Transformer Hybrid Architecture for Underwater Sonar Image Segmentation
    Lei, Juan
    Wang, Huigang
    Lei, Zelin
    Li, Jiayuan
    Rong, Shaowei
    REMOTE SENSING, 2025, 17 (04)
  • [5] TransSea: Hybrid CNN-Transformer With Semantic Awareness for 3-D Brain Tumor Segmentation
    Liu, Yu
    Ma, Yize
    Zhu, Zhiqin
    Cheng, Juan
    Chen, Xun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [6] Robust Image Forgery Localization Using Hybrid CNN-Transformer Synergy Based Framework
    Sharma, Sachin
    Singh, Brajesh Kumar
    Garg, Hitendra
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (03): : 4691 - 4708
  • [7] A CNN-Transformer Hybrid Model Based on CSWin Transformer for UAV Image Object Detection
    Lu, Wanjie
    Lan, Chaozhen
    Niu, Chaoyang
    Liu, Wei
    Lyu, Liang
    Shi, Qunshan
    Wang, Shiju
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 1211 - 1231
  • [8] A novel hybrid CNN-Transformer model for EEG Motor Imagery classification
    Ma, Yaxin
    Song, Yonghao
    Gao, Fei
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [9] HCTNet: A hybrid CNN-transformer network for breast ultrasound image segmentation
    He, Qiqi
    Yang, Qiuju
    Xie, Minghao
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 155
  • [10] HCformer: Hybrid CNN-Transformer for LDCT Image Denoising
    Jinli Yuan
    Feng Zhou
    Zhitao Guo
    Xiaozeng Li
    Hengyong Yu
    Journal of Digital Imaging, 2023, 36 (5) : 2290 - 2305