Nicotinamide Mononucleotide Restores NAD+ Levels to Alleviate LPS-Induced Inflammation via the TLR4/NF-κB/MAPK Signaling Pathway in Mice Granulosa Cells

被引:1
|
作者
Ahmed, Mehboob [1 ,2 ]
Riaz, Umair [1 ,2 ,3 ]
Lv, Haimiao [1 ,2 ]
Amjad, Muhammad [1 ,2 ]
Ahmed, Sohail [4 ]
Ali, Shaokat [4 ]
Ghani, Muhammad Usman [5 ]
Hua, Guohua [1 ,2 ]
Yang, Liguo [1 ,2 ]
机构
[1] Hubei Hongshan Lab, Wuhan 430070, Peoples R China
[2] Huazhong Agr Univ, Natl Ctr Int Res Anim Genet Breeding & Reprod NCIR, Minist Sci & Technol, Wuhan 430070, Peoples R China
[3] Islamia Univ Bahawalpur, Fac Vet & Anim Sci, Dept Theriogenol, Bahawalpur 63100, Pakistan
[4] Huazhong Agr Univ, Coll Anim Sci & Technol, Key Lab Agr Anim Genet Breeding & Reprod, Minist Educ, Wuhan 430070, Peoples R China
[5] Southwest Univ, Med Res Inst, Chongqing 400715, Peoples R China
基金
国家重点研发计划;
关键词
granulosa cell; NMN; NAD(+); inflammation; apoptosis; ROS; steroidogenesis; NF-KAPPA-B; OXIDATIVE STRESS; METABOLISM; DYSFUNCTION; EXPRESSION; RIBOSIDE;
D O I
10.3390/antiox14010039
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Inflammation disrupts the normal function of granulosa cells (GCs), which leads to ovarian dysfunction and fertility decline. Inflammatory conditions such as polycystic ovary syndrome (PCOS), primary ovarian insufficiency (POI), endometriosis, and age-related ovarian decline are often associated with chronic low-grade inflammation. Nicotinamide mononucleotide (NMN) is an important precursor of NAD(+) and has gained attention for its potential to modulate cellular metabolism, redox homeostasis, and mitigate inflammation. This study investigated the protective roles of NMN against lipopolysaccharide LPS-mediated inflammation in GCs. The results of this experiment demonstrated that LPS had negative effects on GCs in term of reduced viability and proliferation rates and upregulated the production of pro-inflammatory cytokines, including interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), cyclooxygenase-2 (Cox-2), and tumor necrosis factor-alpha (TNF-alpha). Notably, the levels of NAD(+) and NAD(+)/NADH ratio in GCs were reduced in response to inflammation. On the other hand, NMN supplementation restored the NAD(+) levels and the NAD(+)/NADH ratio in GCs and significantly reduced the expression of pro-inflammatory markers at both mRNA and protein levels. It also enhanced cell viability and proliferation rates of GCs. Furthermore, NMN also reduced apoptosis rates in GCs by downregulating pro-apoptotic markers, including Caspase-3, Caspase-9, and Bax while upregulating anti-apoptotic marker Bcl-2. NMN supplementation significantly reduced reactive oxygen species ROS and improved steroidogenesis activity by restoring the estradiol (E2) and progesterone (P4) levels in LPS-treated GCs. Mechanistically, this study found that NMN suppressed the activation of the TLR4/NF-kappa B/MAPK signaling pathways in GCs, which regulates inflammatory processes. In conclusion, the findings of this study revealed that NMN has the potential to reduce LPS-mediated inflammatory changes in GCs by modulating NAD(+) metabolism and inflammatory signaling pathways. NMN supplementation can be used as a potential therapeutic agent for ovarian inflammation and related fertility disorders.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Inhibition of Dyrk1A Attenuates LPS-Induced Neuroinflammation via the TLR4/NF-κB P65 Signaling Pathway
    Cheng Ju
    Yue Wang
    Caixia Zang
    Hui Liu
    Fangyu Yuan
    Jingwen Ning
    Meiyu Shang
    Jingwei Ma
    Gen Li
    Yang Yang
    Xiuqi Bao
    Dan Zhang
    Inflammation, 2022, 45 : 2375 - 2387
  • [42] Inhibition of Dyrk1A Attenuates LPS-Induced Neuroinflammation via the TLR4/NF-κB P65 Signaling Pathway
    Ju, Cheng
    Wang, Yue
    Zang, Caixia
    Liu, Hui
    Yuan, Fangyu
    Ning, Jingwen
    Shang, Meiyu
    Ma, Jingwei
    Li, Gen
    Yang, Yang
    Bao, Xiuqi
    Zhang, Dan
    INFLAMMATION, 2022, 45 (06) : 2375 - 2387
  • [43] Nuciferine alleviates LPS-induced mastitis in mice via suppressing the TLR4-NF-B signaling pathway
    Chen, Xingxing
    Zheng, Xintian
    Zhang, Min
    Yin, Huifang
    Jiang, Kangfeng
    Wu, Haichong
    Dai, Ailing
    Yang, Shoushen
    INFLAMMATION RESEARCH, 2018, 67 (11-12) : 903 - 911
  • [44] Tenuigenin exhibits protective effects against LPS-induced acute kidney injury via inhibiting TLR4/NF-κB signaling pathway
    Fu, Haiyan
    Hu, Zhansheng
    Di, Xingwei
    Zhang, Qiuhong
    Zhou, Rongbin
    Du, Hongyang
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2016, 791 : 229 - 234
  • [45] Aloperine suppresses LPS-induced macrophage activation through inhibiting the TLR4/NF-κB pathway
    Yinyin Ye
    Yuwei Wang
    Yanlang Yang
    Liangfei Tao
    Inflammation Research, 2020, 69 : 375 - 383
  • [46] Aloperine suppresses LPS-induced macrophage activation through inhibiting the TLR4/NF-κB pathway
    Ye, Yinyin
    Wang, Yuwei
    Yang, Yanlang
    Tao, Liangfei
    INFLAMMATION RESEARCH, 2020, 69 (04) : 375 - 383
  • [47] Nuciferine alleviates LPS-induced mastitis in mice via suppressing the TLR4-NF-κB signaling pathway
    Xingxing Chen
    Xintian Zheng
    Min Zhang
    Huifang Yin
    Kangfeng Jiang
    Haichong Wu
    Ailing Dai
    Shoushen Yang
    Inflammation Research, 2018, 67 : 903 - 911
  • [48] Glutamine Supplementation Attenuates the Inflammation Caused by LPS-Induced Acute Lung Injury in Mice by Regulating the TLR4/MAPK Signaling Pathway
    Jie Huang
    Jing Liu
    Guangjun Chang
    Yan Wang
    Nana Ma
    Animesh Chadra Roy
    Xiangzhen Shen
    Inflammation, 2021, 44 : 2180 - 2192
  • [49] Glutamine Supplementation Attenuates the Inflammation Caused by LPS-Induced Acute Lung Injury in Mice by Regulating the TLR4/MAPK Signaling Pathway
    Huang, Jie
    Liu, Jing
    Chang, Guangjun
    Wang, Yan
    Ma, Nana
    Roy, Animesh Chadra
    Shen, Xiangzhen
    INFLAMMATION, 2021, 44 (06) : 2180 - 2192
  • [50] Baicalin prevents LPS-induced activation of TLR4/NF-κB p65 pathway and inflammation in mice via inhibiting the expression of CD14
    Ya-jun Fu
    Bo Xu
    Shao-wei Huang
    Xia Luo
    Xiang-liang Deng
    Shuang Luo
    Chang Liu
    Qing Wang
    Jin-yan Chen
    Lian Zhou
    Acta Pharmacologica Sinica, 2021, 42 : 88 - 96