Microstructure and compressive mechanical properties of BCC structured (NbTi)100-x(CrAl)x medium-entropy alloys

被引:0
作者
Kim, Ji-Won [1 ,2 ]
Yoo, Sang-Kyu [1 ,3 ]
Lee, Dong-Hyun [4 ]
Choi, In-Chul [1 ]
机构
[1] Kumoh Natl Inst Technol, Sch Mat Sci & Engn, Gumi 39177, South Korea
[2] SeAH CSS Corp, Met Proc Res Grp, R&D Ctr, Chang Won 51708, South Korea
[3] Dorco Co LTD, Technol Dept, Yongin 17038, South Korea
[4] Chungnam Natl Univ, Dept Mat Sci & Engn, Daejeon 34134, South Korea
基金
新加坡国家研究基金会;
关键词
BCC structured medium-entropy alloy; Microstructure; Compressive strength; Compressive strain; SOLID-SOLUTION PHASE; IN-SITU COMPOSITES; OXIDATION BEHAVIOR; CR; STABILITY; AL; TEMPERATURES;
D O I
10.1016/j.intermet.2025.108651
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To obtain a medium-entropy alloy (MEA) having a body-centered cubic (BCC) structure with relatively high specific strength and room-temperature fracture strain, a NbTiCrAl alloy is manufactured by the vacuum arc melting method. The NbTiCrAl alloy is developed by adding Ti to improve elongation and reduce weight, Al to enhance strength and reduce weight, and Cr to increase oxidation resistance. However, Al and Cr can form intermetallic compounds, which may reduce the mechanical properties of the alloy. To optimize strength and fracture strain, the contents of Al and Cr are varied. All the (NbTi)100-x(CrAl)x alloys, except those with more than 40 at.% Al and Cr, exhibit a BCC solid solution phase as a main phase. As the Al and Cr contents increase to 50 at. %, the short-range ordered B2 phase and the intermetallic compound Laves C14 phase are coexisted, as confirmed by microstructural analysis. The room temperature compression test results show that the yield strength improves without compromising fracture strain when the Cr and Al contents increase. However, when the total Cr and Al contents exceed 40 at.%, the short-range ordered B2 and Laves C14 phases coexist within the BCC matrix, resulting in catastrophic failure. Finally, in the (NbTi)100-x(CrAl)x alloys, (NbTi)70(CrAl)30 MEA exhibits the best properties in terms of specific yield strength and fracture strain.
引用
收藏
页数:11
相关论文
共 60 条
[21]   Absence of long-range chemical ordering in equimolar FeCoCrNi [J].
Lucas, M. S. ;
Wilks, G. B. ;
Mauger, L. ;
Munoz, J. A. ;
Senkov, O. N. ;
Michel, E. ;
Horwath, J. ;
Semiatin, S. L. ;
Stone, M. B. ;
Abernathy, D. L. ;
Karapetrova, E. .
APPLIED PHYSICS LETTERS, 2012, 100 (25)
[22]   The BCC/B2 Morphologies in AlxNiCoFeCr High-Entropy Alloys [J].
Ma, Yue ;
Jiang, Beibei ;
Li, Chunling ;
Wang, Qing ;
Dong, Chuang ;
Liaw, Peter K. ;
Xu, Fen ;
Sun, Lixian .
METALS, 2017, 7 (02)
[23]   A critical review of high entropy alloys and related concepts [J].
Miracle, D. B. ;
Senkov, O. N. .
ACTA MATERIALIA, 2017, 122 :448-511
[24]   Microstructure and mechanical response of novel Co-free FeNiMnCrAlTi high-entropy alloys [J].
Mohammadzadeh, Roghayeh ;
Heidarzadeh, Akbar ;
Serindag, H. Tarik ;
Cam, Gurel .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 26 :2043-2049
[25]   Structure of the high-entropy alloy AlxCrFeCoNi: fcc versus bcc [J].
Ogura, Masako ;
Fukushima, Tetsuya ;
Zeller, Rudolf ;
Dederichs, Peter H. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 715 :454-459
[26]   Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys [J].
Otto, F. ;
Yang, Y. ;
Bei, H. ;
George, E. P. .
ACTA MATERIALIA, 2013, 61 (07) :2628-2638
[27]  
Porter DA, 2009, Phase transformations in metals and alloys
[28]   Tuning Ideal Tensile Strengths and Intrinsic Ductility of bcc Refractory Alloys [J].
Qi, Liang ;
Chrzan, D. C. .
PHYSICAL REVIEW LETTERS, 2014, 112 (11)
[29]   Al-Cr-Nb (Aluminum-Chromium-Niobium) [J].
Raghavan, V. .
JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, 2011, 32 (03) :241-242
[30]   Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy [J].
Rogal, L. ;
Morgiel, J. ;
Swiatek, Z. ;
Czerwinski, F. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 651 :590-597