Effect of 2DEG density and Drain/Source Field Plate design on dynamic-RON of 650 V AlGaN/GaN HEMTs

被引:0
作者
Cioni, M. [1 ,2 ]
Giorgino, G. [1 ,2 ]
Chini, A. [1 ]
Zagni, N. [1 ]
Cappellini, G. [2 ]
Principato, S. [2 ]
Miccoli, C. [2 ]
Wakrim, T. [2 ]
Castagna, M. E. [2 ]
Constant, A. [2 ]
Iucolano, F. [2 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Ingn Enzo Ferrari, Via P Vivarelli 10, I-41125 Modena, Italy
[2] STMicroelectronics, Str Primosole N 50, I-95121 Catania, Italy
关键词
R-ON; GAN;
D O I
10.1016/j.microrel.2025.115666
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The effect of 2DEG density and Drain/Source Field Plate design on dynamic-RON of 650 V p-GaN gate AlGaN/GaN HEMTs is investigated in this work. Devices presenting three different AlGaN barrier and p-GaN layer design have been tested by means of Capacitance-Voltage measurements, Static VDS stress and Pulsed I-V characterization. C-V measurements allowed the extraction of 2DEG density, while Static VDS stress and Pulsed I-V put in evidence the partial recovery of the dynamic-RON at high VDS,stress, potentially explained by a field-driven hole generation mechanism that partially compensates negatively ionized Carbon acceptors in the GaN Buffer. This hypothesis is in line with the trends observed for different 2DEG density and different drain field-plate designs, suggesting that a higher electric field under the drain terminal can significantly reduce RON-degradation at high voltages, due to an easier holes generation. Furthermore, Pulsed I-V tests under resistive load switching mode have been addressed, highlighting the impact of the distance between source field plate and drain field plate on the dynamic-RON degradation in conventional switch mode operations.
引用
收藏
页数:7
相关论文
共 15 条
  • [1] Chen K.J., Haberlen O., Lidow A., Tsai C.L., Ueda T., Uemoto Y., Wu Y., GaN-on-Si power technology: devices and applications, IEEE Trans. Electron Devices, 64, 3, pp. 779-795, (2017)
  • [2] Canato E., Et al., OFF-state trapping phenomena in GaN HEMTs: interplay between gate trapping, acceptor ionization and positive charge redistribution, Microelectron. Reliab., 114, (2020)
  • [3] del Alamo J.A., Lee E.S., Stability and reliability of lateral GaN power field-effect transistors, IEEE Trans. Electron Devices, 66, 11, pp. 4578-4590, (2019)
  • [4] Uren M.J., Moreke J., Kuball M., Buffer design to minimize current collapse in GaN/AlGaN HFETs, IEEE Trans. Electron Devices, 59, 12, pp. 3327-3333, (2012)
  • [5] Cioni M., Zagni N., Iucolano F., Moschetti M., Verzellesi G., Chini A., Partial recovery of dynamic RON versus OFF-state stress voltage in p-GaN gate AlGaN/GaN power HEMTs, IEEE Trans. Electron Devices, 68, 10, pp. 4862-4868, (2021)
  • [6] Minetto A., Et al., Drain field plate impact on the hard-switching performance of AlGaN/GaN HEMTs, IEEE Trans. Electron Devices, 68, 10, pp. 5003-5008, (2021)
  • [7] Ao J.-P., Et al., AlGaN/GaN high electron mobility transistor with thin buffer layers, Jpn. J. Appl. Phys., 42, (2003)
  • [8] Uren M.J., Kuball M., Impact of carbon in the buffer on power switching GaN-on-Si and RF GaN-on-SiC HEMTs, Jpn. J. Appl. Phys., 60, SB, (2021)
  • [9] Meneghesso G., Meneghini M., Silvestri R., Vanmeerbeek P., Moens P., Zanoni E., High voltage trapping effects in GaN-based metal–insulator–semiconductor transistors, Jpn. J. Appl. Phys., 55, 1S, (2016)
  • [10] Moens P., Et al., Negative dynamic Ron in AlGaN/GaN power devices, Proc. 29th Int. Symp. Power Semiconductor Devices (ISPSD), pp. 97-100, (2017)