Analysis of interlayer dependency of MoS2/g-C3N4 heterostructure as an anode material for sodium-ion batteries

被引:0
|
作者
Shivani, V. [1 ]
Sriram, S. [1 ]
机构
[1] SASTRA Deemed Univ, Sch Elect & Elect Engn, Dept Phys, Thanjavur 613401, India
关键词
Sodium ion batteries; anode material; DFT; MoS2/g-C3N4; interlayer distances; DENSITY-FUNCTIONAL THEORY; NA; LITHIUM; MOS2; ADSORPTION; DIFFUSION; MECHANISM; CAPACITY;
D O I
10.1080/00268976.2024.2422031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this present work, we explore the effectiveness of layered molybdenum disulfide (2H-MoS2) and graphitic carbon nitride (g-C3N4) heterostructure as anode for Sodium-Ion Batteries (SIBs) by using first principles analysis. To study the anode properties, we varied the interlayer distance between 2H-MoS2/g-C3N4 as 3 & Aring;, 6 & Aring;, 9 & Aring;,12 & Aring;, and 14 & Aring; between MoS2 as substrate and g-C3N4 as top layer. The fundamental properties, such as structural stability and electronic structure were analysed for the respective systems. The adsorption kinetics of Na ion on the g-C3N4 layer were analysed by performing molecular dynamics (MD) simulations to understand the adsorption mechanism better. Our results showed that the interlayer distance of 6 & Aring; with formation energy of -4.31 eV, the theoretical specific capacity value of 765.32 mAhg(-1), the average electrode potential is between 0.8 and 1.3 V and the adsorption energy of -2.16 eV is suitable for MoS2/g-C3N4 based anodes for Na ion batteries. [GRAPHICS]
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Facile synthesis of Sb2S3/MoS2 heterostructure as anode material for sodium-ion batteries
    Zhang, Zhendong
    Zhao, Jiachang
    Xu, Meilan
    Wang, Hongxia
    Gong, Yanmei
    Xu, Jingli
    NANOTECHNOLOGY, 2018, 29 (33)
  • [2] MoS2/C3N heterostructure: A promising anode material for Lithium-ion batteries
    He, Jingjing
    Jiao, Zhaoyong
    APPLIED SURFACE SCIENCE, 2022, 580
  • [3] Interlayer Distance Dependency of Lithium Storage in MoS2 as Anode Material for Lithium-ion Batteries
    Qian, Xiaofang
    Wang, Yourong
    Zhou, Wei
    Zhang, Liping
    Song, Guangsen
    Cheng, Siqing
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (04): : 3510 - 3517
  • [4] Ab initio characterization of layered MoS2 as anode for sodium-ion batteries
    Mortazavi, Majid
    Wang, Chao
    Deng, Junkai
    Shenoy, Vivek B.
    Medhekar, Nikhil V.
    JOURNAL OF POWER SOURCES, 2014, 268 : 279 - 286
  • [5] MoS2/SnS@C hollow hierarchical nanotubes as superior performance anode for sodium-ion batteries
    Tang, Lin-bo
    Zhang, Bao
    Peng, Tao
    He, Zhen-jiang
    Yan, Cheng
    Mao, Jing
    Dai, Kehua
    Wu, Xian-wen
    Zheng, Jun-chao
    NANO ENERGY, 2021, 90
  • [6] An Advanced MoS2/Carbon Anode for High-Performance Sodium-Ion Batteries
    Wang, Jingjing
    Luo, Chao
    Gao, Tao
    Langrock, Alex
    Mignerey, Alice C.
    Wang, Chunsheng
    SMALL, 2015, 11 (04) : 473 - 481
  • [7] Hierarchical Ti3C2/TiO2/MoS2 Composite as an Anode Material for Sodium-ion Batteries
    Bai, Yulin
    Feng, Rong
    Yan, Tao
    Liu, Yusi
    Cui, Li
    Wang, Kaixue
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2023, 39 (06) : 1100 - 1105
  • [8] Hierarchical Ti3C2/TiO2/MoS2 Composite as an Anode Material for Sodium-ion Batteries
    Yulin Bai
    Rong Feng
    Tao Yan
    Yusi Liu
    Li Cui
    Kaixue Wang
    Chemical Research in Chinese Universities, 2023, 39 : 1100 - 1105
  • [9] Advanced MoS2 and graphene heterostructures as high-performance anode for sodium-ion batteries
    Li, Jianhui
    Wang, Hongkang
    Wei, Wei
    Meng, Lingjie
    NANOTECHNOLOGY, 2019, 30 (10)
  • [10] Significant promotion of interlayer ion diffusion for MoS2 /MoBS heterostructure as high performance Li/Na ion batteries anode material
    Chen, Jian
    Kang, Yao
    Wang, Xudong
    Huang, Hao
    Yao, Man
    SURFACES AND INTERFACES, 2024, 54