Effects of Alternate Wetting and Drying Irrigation on Methane and Nitrous Oxide Emissions From Rice Fields: A Meta-Analysis

被引:1
|
作者
Zhao, Chenxi [1 ]
Qiu, Rangjian [1 ]
Zhang, Tao [1 ]
Luo, Yufeng [1 ]
Agathokleous, Evgenios [2 ]
机构
[1] Wuhan Univ, Sch Water Resources & Hydropower Engn, State Key Lab Water Resources Engn & Management, Wuhan, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Ecol & Appl Meteorol, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
biochar application; global warming potential (GWP(CH4+N2O)); methane emissions (CH4); N application; nitrous oxide emissions (N2O); safe" AWD; SOC; soil pH; GREENHOUSE-GAS EMISSIONS; WATER MANAGEMENT IMPACTS; GRAIN-YIELD; PADDY FIELD; N2O EMISSIONS; SYSTEMS; PRODUCTIVITY; GROWTH; FERTILIZATION; METHYLMERCURY;
D O I
10.1111/gcb.17581
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Reducing water input and promoting water productivity in rice field under alternate wetting and drying irrigation (AWD), instead of continuous flooding (CF), are vital due to increasing irrigation water scarcity. However, it is also important to understand how methane (CH4) and nitrous oxide (N2O) emissions and global warming potential (GWP(CH4+N2O) of CH4 and N2O) respond to AWD under the influence of various factors. Here, we conducted a meta-analysis to investigate the impact of AWD on CH4 and N2O emissions and GWP(CH4+N2O), and its modification by climate conditions, soil properties, and management practices. Overall, compared to CF, AWD significantly reduced CH4 emissions by 51.6% and GWP(CH4+N2O) by 46.9%, while increased N2O emissions by 44.0%. The effect of AWD on CH4 emissions was significantly modified by soil drying level, the number of drying events, mean annual precipitation (MAP), soil organic carbon content (SOC), growth cycle, and nitrogen fertilizer (N) application. Regarding N2O emissions, mean annual temperature (MAT), elevation, soil texture, and soil pH had significant impacts on the AWD effect. Consequently, the GWP(CH4+N2O) under AWD was altered by soil drying level, soil pH, and growth cycle. Additionally, we found that MAP or MAT can be used to accurately assess the changes of global or national CH4 and N2O emissions under mild AWD. Moreover, increasing SOC, but not N application, is a potential strategy to further reduce CH4 emissions under (mild) AWD, since no difference was found between application of 60-120 and > 120 kg N ha(-1). Furthermore, the soil pH can serve as an indicator to assess the reduction of GWP(CH4+N2O) under (mild) AWD as indicated by a significant linear correlation between them. These findings can provide valuable data support for accurate evaluation of non-CO2 greenhouse gas emissions reduction in rice fields under large-scale promotion of AWD in the future.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Nitrous oxide and nitric oxide emissions from lowland rice cultivation with urea deep placement and alternate wetting and drying irrigation
    Islam, S. M. Mofijul
    Gaihre, Yam Kanta
    Biswas, Jatish Chandra
    Singh, Upendra
    Ahmed, Md. Nayeem
    Sanabria, Joaquin
    Saleque, M. A.
    SCIENTIFIC REPORTS, 2018, 8
  • [2] Nitrous oxide and nitric oxide emissions from lowland rice cultivation with urea deep placement and alternate wetting and drying irrigation
    S. M. Mofijul Islam
    Yam Kanta Gaihre
    Jatish Chandra Biswas
    Upendra Singh
    Md. Nayeem Ahmed
    Joaquin Sanabria
    M. A. Saleque
    Scientific Reports, 8
  • [3] Evaluating the effects of alternate wetting and drying (AWD) on methane and nitrous oxide emissions from a paddy field in Thailand
    Chidthaisong, Amnat
    Cha-un, Nittaya
    Rossopa, Benjamas
    Buddaboon, Chitnucha
    Kunuthai, Choosak
    Sriphirom, Patikorn
    Towprayoon, Sirintornthep
    Tokida, Takeshi
    Padre, Agnes T.
    Minamikawa, Kazunori
    SOIL SCIENCE AND PLANT NUTRITION, 2018, 64 (01) : 31 - 38
  • [4] Effects of alternate wetting and drying irrigation on yield, water-saving, and emission reduction in rice fields: A global meta-analysis
    Gao, Rong
    Zhuo, La
    Duan, Yiduo
    Yan, Chenjian
    Yue, Zhiwei
    Zhao, Zikun
    Wu, Pute
    AGRICULTURAL AND FOREST METEOROLOGY, 2024, 353
  • [5] Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis
    Carrijo, Daniela R.
    Lundy, Mark E.
    Linquist, Bruce A.
    FIELD CROPS RESEARCH, 2017, 203 : 173 - 180
  • [6] Effects of alternate wetting and drying irrigation on yield, water and nitrogen use, and greenhouse gas emissions in rice paddy fields
    Cheng, Haomiao
    Shu, Kexin
    Zhu, Tengyi
    Wang, Liang
    Liu, Xiang
    Cai, Wei
    Qi, Zhiming
    Feng, Shaoyuan
    JOURNAL OF CLEANER PRODUCTION, 2022, 349
  • [7] Methane and nitrous oxide emissions in rice fields influenced with duration of cultivars and irrigation regimes
    Kaur, Manjeet
    Dheri, G. S.
    Brar, A. S.
    Kalia, Anu
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2024, 365
  • [8] Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields
    Towprayoon, S
    Smakgahn, K
    Poonkaew, S
    CHEMOSPHERE, 2005, 59 (11) : 1547 - 1556
  • [9] Engineered biochar effects on methane emissions and rice yield under alternate wetting and drying in paddy soils
    Liu, Chang
    Chen, Taotao
    Zhang, Feng
    Han, Hongwei
    Yi, Benji
    Meng, Jun
    Chi, Daocai
    Ok, Yong Sik
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2025, 38
  • [10] Is alternate wetting and drying irrigation technique enough to reduce methane emission from a tropical rice paddy?
    Samoy-Pascual, Kristine
    Sibayan, Evangeline B.
    Grospe, Filomena S.
    Remocal, Alaissa T.
    T-Padre, Agnes
    Tokida, Takeshi
    Minamikawa, Kazunori
    SOIL SCIENCE AND PLANT NUTRITION, 2019, 65 (02) : 203 - 207