Universal distribution of the empirical coverage in split conformal prediction

被引:0
作者
Marques, F. Paulo C. [1 ]
机构
[1] Insper Inst Educ & Res, Rua Quata 300, BR-04546042 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Prediction sets; Batch mode prediction; Empirical coverage; Split conformal prediction; Calibration sample size; de Finetti's representation theorem;
D O I
10.1016/j.spl.2024.110350
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
When split conformal prediction operates in batch mode with exchangeable data, we determine the exact distribution of the empirical coverage of prediction sets produced for a finite batch of future observables. This distribution is universal, being determined solely by the batch size, the nominal miscoverage level, and the calibration sample size. The exact distribution of the almost sure limit of the empirical coverage as the batch size goes to infinity is also identified, leading to a criterion for choosing the minimum required calibration sample size in applications.
引用
收藏
页数:5
相关论文
共 13 条
[1]   Conformal Prediction: A Gentle Introduction [J].
Angelopoulos, Anastasios N. ;
Bates, Stephen .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2023, 16 (04) :494-591
[2]  
[Anonymous], CDC/National Center for Health Statistics, n.d. https://www.cdc.gov/nchs/nhanes/index.htm). [WWW Document]. URL https://www.cdc.gov/nchs/nhanes/index.htm (accessed 3.23.19).
[3]  
[Anonymous], 2023, R Foundation for Statistical Computing
[4]   Conformal prediction: A unified review of theory and new challenges [J].
Fontana, Matteo ;
Zeni, Gianlca ;
Vantini, Simone .
BERNOULLI, 2023, 29 (01) :1-23
[5]  
Friedman Jerome., 2001, The elements of statistical learning, V1
[6]  
Hulsman R., 2022, Master's thesis
[7]   Distribution-Free Predictive Inference for Regression [J].
Lei, Jing ;
G'Sell, Max ;
Rinaldo, Alessandro ;
Tibshirani, Ryan J. ;
Wasserman, Larry .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (523) :1094-1111
[8]  
Papadopoulos H, 2002, LECT NOTES ARTIF INT, V2430, P345
[9]  
Romano Y., 2019, Advances in Neural Information Processing Systems, P1
[10]  
Schervish MJ., 1995, THEORY STAT