Spatio-temporal data fusion for the analysis of in situ and remote sensing data using the INLA-SPDE approach

被引:0
作者
He, Shiyu [1 ]
Wong, Samuel W. K. [1 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Data fusion; Spatial misalignment; Integrated Nested Laplace Approximation; (INLA); Stochastic partial differential equations (SPDE); PARTICULATE MATTER; ALGAL BLOOM; MODEL; ASSOCIATION; REGRESSION; OUTPUT;
D O I
10.1016/j.spasta.2024.100863
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We propose a Bayesian hierarchical model to address the challenge of spatial misalignment in spatio-temporal data obtained from in situ and satellite sources. The model is fit using the INLASPDE approach, which provides efficient computation. Our methodology combines the different data sources in a "fusion" model via the construction of projection matrices in both spatial and temporal domains. Through simulation studies, we demonstrate that the fusion model has superior performance in prediction accuracy across space and time compared to standalone "in situ" and "satellite" models based on only in situ or satellite data, respectively. The fusion model also generally outperforms the standalone models in terms of parameter inference. Such a modeling approach is motivated by environmental problems, and our specific focus is on the analysis and prediction of harmful algae bloom (HAB) events, where the convention is to conduct separate analyses based on either in situ samples or satellite images. A real data analysis shows that the proposed model is a necessary step towards a unified characterization of bloom dynamics and identifying the key drivers of HAB events.
引用
收藏
页数:16
相关论文
共 40 条
[1]  
Banerjee S., 2004, Hierarchical modeling and analysis for spatial data
[2]   A Spatio-Temporal Downscaler for Output From Numerical Models [J].
Berrocal, Veronica J. ;
Gelfand, Alan E. ;
Holland, David M. .
JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2010, 15 (02) :176-197
[3]   Probabilistically assessing the role of nutrient loading in harmful algal bloom formation in western Lake Erie [J].
Bertani, Isabella ;
Obenour, Daniel R. ;
Steger, Cara E. ;
Stow, Craig A. ;
Gronewold, Andrew D. ;
Scavia, Donald .
JOURNAL OF GREAT LAKES RESEARCH, 2016, 42 (06) :1184-1192
[4]   Tracking cyanobacteria blooms: Do different monitoring approaches tell the same story? [J].
Bertani, Isabella ;
Steger, Cara E. ;
Obenour, Daniel R. ;
Fahnenstiel, Gary L. ;
Bridgeman, Thomas B. ;
Johengen, Thomas H. ;
Sayers, Michael J. ;
Shuchman, Robert A. ;
Scavia, Donald .
SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 575 :294-308
[5]  
Blangiardo M, 2015, SPATIAL AND SPATIO-TEMPORAL BAYESIAN MODELS WITH R-INLA, P1, DOI 10.1002/9781118950203
[6]   A survey on ecological regression for health hazard associated with air pollution [J].
Bruno, Francesca ;
Cameletti, Michela ;
Franco-Villoria, Maria ;
Greco, Fedele ;
Ignaccolo, Rosaria ;
Ippoliti, Luigi ;
Valentini, Pasquale ;
Ventrucci, Massimo .
SPATIAL STATISTICS, 2016, 18 :276-299
[7]   Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study [J].
Bullerjahn, George S. ;
McKay, Robert M. ;
Davis, Timothy W. ;
Baker, David B. ;
Boyer, Gregory L. ;
D'Anglada, Lesley V. ;
Doucette, Gregory J. ;
Ho, Jeff C. ;
Irwin, Elena G. ;
Kling, Catherine L. ;
Kudela, Raphael M. ;
Kurmayer, Rainer ;
Michalak, Anna M. ;
Ortiz, Joseph D. ;
Otten, Timothy G. ;
Paerl, Hans W. ;
Qin, Boqiang ;
Sohngen, Brent L. ;
Stumpf, Richard P. ;
Visser, Petra M. ;
Wilhelm, Steven W. .
HARMFUL ALGAE, 2016, 54 :223-238
[8]   Spatio-temporal modeling of particulate matter concentration through the SPDE approach [J].
Cameletti, Michela ;
Lindgren, Finn ;
Simpson, Daniel ;
Rue, Havard .
ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2013, 97 (02) :109-131
[9]   Comparing spatio-temporal models for particulate matter in Piemonte [J].
Cameletti, Michela ;
Ignaccolo, Rosaria ;
Bande, Stefano .
ENVIRONMETRICS, 2011, 22 (08) :985-996
[10]   covatest: An R Package for Selecting a Class of Space-Time Covariance Functions [J].
Cappello, Claudia ;
De Iaco, Sandra ;
Posa, Donato .
JOURNAL OF STATISTICAL SOFTWARE, 2020, 94 (01) :1-42