Uniqueness of identifying multiple parameters in a time-fractional Cattaneo equation

被引:0
作者
Zhang, Yun [1 ]
Feng, Xiaoli [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710126, Peoples R China
关键词
Time-fractional Cattaneo equation; Inverse problems; Uniqueness;
D O I
10.1016/j.aml.2024.109438
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses an inverse problem involving the simultaneous identification of the fractional order, potential coefficient, initial value and source term in a time-fractional Cattaneo equation. Utilizing the method of Laplace transformation, we demonstrate that the multiple unknowns can be uniquely determined from observational data collected at two boundary points.
引用
收藏
页数:5
相关论文
共 12 条
[1]   Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation [J].
Cheng, Jin ;
Nakagawa, Junichi ;
Yamamoto, Masahiro ;
Yamazaki, Tomohiro .
INVERSE PROBLEMS, 2009, 25 (11)
[2]   The generalized Cattaneo equation for the description of anomalous transport processes [J].
Compte, A ;
Metzler, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (21) :7277-7289
[3]  
Gel0fand I.M., 1955, Amer. Math. Soc. Transl. (2), V1, P253
[4]   Recovering multiple fractional orders in time-fractional diffusion in an unknown medium [J].
Jin, Bangti ;
Kian, Yavar .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2253)
[5]   SIMULTANEOUS UNIQUENESS FOR MULTIPLE PARAMETERS IDENTIFICATION IN A FRACTIONAL DIFFUSION-WAVE EQUATION [J].
Jing, Xiaohua ;
Yamamoto, Masahiro .
INVERSE PROBLEMS AND IMAGING, 2022, 16 (05) :1199-1217
[6]   Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation [J].
Li, Gongsheng ;
Zhang, Dali ;
Jia, Xianzheng ;
Yamamoto, Masahiro .
INVERSE PROBLEMS, 2013, 29 (06)
[7]   Existence and uniqueness of a weak solution to fractional single-phase-lag heat equation [J].
Maes, Frederick ;
Van Bockstal, Karel .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (04) :1663-1690
[8]  
MURAYAMA R, 1981, J FS U TOKYO IA, V28, P317
[9]   Initial-boundary value problems for multi-term time-fractional wave equations [J].
Sin, Chung-Sik ;
Rim, Jin-U ;
Choe, Hyon-Sok .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (05) :1994-2019
[10]   Simultaneous inversion of the potential term and the fractional orders in a multi-term time-fractional diffusion equation [J].
Sun, L. L. ;
Li, Y. S. ;
Zhang, Y. .
INVERSE PROBLEMS, 2021, 37 (05)