Ultrasound radiomics model based on grayscale transrectal ultrasound-guided biopsy for diagnosing prostate cancer and predicting distant metastasis

被引:0
作者
Liu, Jie [1 ]
Xiang, Zhendong [2 ]
Yi, Cheng [2 ]
Yang, Tianzi [3 ]
Liu, Dongting [1 ]
机构
[1] China Three Gorges Univ, Yichang Cent Peoples Hosp, Coll Clin Med Sci 1, Dept Ultrasound, 2 Jiefang Rd, Yichang, Hubei, Peoples R China
[2] China Three Gorges Univ, Yichang Cent Peoples Hosp, Coll Clin Med Sci 1, Dept Urol, 2 Jiefang Rd, Yichang, Hubei, Peoples R China
[3] China Three Gorges Univ Med Sci, Daxue Rd, Yichang, Hubei, Peoples R China
关键词
Ultrasound radiomics; Ultrasound-guided biopsy; Prostate cancer; Diagnosis; Predict; MRI;
D O I
10.1007/s11255-025-04366-9
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
ObjectiveA prostate ultrasound (US) imaging omics model was established to assess its effectiveness in diagnosing prostate cancer (PCa), predicting Gleason score (GS), and determining the likelihood of distant metastasis.MethodsUS images of patients with prostate pathology confirmed by biopsy or surgery at our hospital were retrospectively analyzed. Regions of interest (ROI) segmentation, feature extraction, feature screening, and the construction and training of the radiomics model were performed.ResultsArea under the curve (AUC) for the magnetic resonance imaging Prostate Imaging Reporting and Data System (MRI PI-RADS) classification, radiomics alone, and radiomics combined with prostate-specific antigen (PSA) in diagnosing PCa were 70.74%, 71.13%, and 90.47%, respectively. AUCs for the MRI PI-RADS classification, radiomics alone, and radiomics combined with PSA in predicting the GS of PCa were 75.6%, 74.7%, and 88.9%, respectively. Furthermore, AUCs for MRI PI-RADS classification and radiomics alone in predicting distant metastasis of PCa were 66.7% and 90.8%, respectively.ConclusionThe combination of ultrasonic imaging omics and serum PSA significantly improves the efficiency of PCa diagnosis, GS prediction, and distant metastasis prediction. This method is an important tool for PCa screening and follow-up.
引用
收藏
页码:1797 / 1809
页数:13
相关论文
共 22 条
[1]   Radiomics in breast cancer classification and prediction [J].
Conti, Allegra ;
Duggento, Andrea ;
Indovina, Iole ;
Guerrisi, Maria ;
Toschi, Nicola .
SEMINARS IN CANCER BIOLOGY, 2021, 72 :238-250
[2]   Advanced ultrasound in the diagnosis of prostate cancer [J].
Correas, Jean-Michel ;
Halpern, Ethan J. ;
Barr, Richard G. ;
Ghai, Sangeet ;
Walz, Jochen ;
Bodard, Sylvain ;
Dariane, Charles ;
de la Rosette, Jean .
WORLD JOURNAL OF UROLOGY, 2021, 39 (03) :661-676
[3]   Prostate Magnetic Resonance Imaging, with or Without Magnetic Resonance Imaging-targeted Biopsy, and Systematic Biopsy for Detecting Prostate Cancer: A Cochrane Systematic Review and Meta-analysis [J].
Drost, Frank-Jan H. ;
Osses, Daniel ;
Nieboer, Daan ;
Bangma, Chris H. ;
Steyerberg, Ewout W. ;
Roobol, Monique J. ;
Schoots, Ivo G. .
EUROPEAN UROLOGY, 2020, 77 (01) :78-94
[4]   Structured Population-based Prostate-specific Antigen Screening for Prostate Cancer: The European Association of Urology Position in 2019 [J].
Gandaglia, Giorgio ;
Albers, Peter ;
Abrahamsson, Per-Anders ;
Briganti, Alberto ;
Cattoe, James Wf ;
Chapplef, Christopher R. ;
Montorsia, Francesco ;
Mottetg, Nicolas ;
Roobol, Monique J. ;
Sonksen, Jens ;
Wirth, Manfred ;
van Poppel, Hendrik .
EUROPEAN UROLOGY, 2019, 76 (02) :142-150
[5]   Beyond Multiparametric MRI and towards Radiomics to Detect Prostate Cancer: A Machine Learning Model to Predict Clinically Significant Lesions [J].
Gaudiano, Caterina ;
Mottola, Margherita ;
Bianchi, Lorenzo ;
Corcioni, Beniamino ;
Cattabriga, Arrigo ;
Cocozza, Maria Adriana ;
Palmeri, Antonino ;
Coppola, Francesca ;
Giunchi, Francesca ;
Schiavina, Riccardo ;
Fiorentino, Michelangelo ;
Brunocilla, Eugenio ;
Golfieri, Rita ;
Bevilacqua, Alessandro .
CANCERS, 2022, 14 (24)
[6]   Multiparametric ultrasound in the diagnosis of prostate cancer [J].
Grey, Alistair ;
Ahmed, Hashim U. .
CURRENT OPINION IN UROLOGY, 2016, 26 (01) :114-119
[7]   Liquid Biopsy for Prostate and Bladder Cancer: Progress and Pitfalls [J].
Groen, Levi ;
Schalken, Jack .
EUROPEAN UROLOGY FOCUS, 2022, 8 (04) :904-906
[8]   MRI-based radiomics models to assess prostate cancer, extracapsular extension and positive surgical margins [J].
He, Dong ;
Wang, Ximing ;
Fu, Chenchao ;
Wei, Xuedong ;
Bao, Jie ;
Ji, Xuefu ;
Bai, Honglin ;
Xia, Wei ;
Gao, Xin ;
Huang, Yuhua ;
Hou, Jianquan .
CANCER IMAGING, 2021, 21 (01)
[9]   The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer:: a meta-analysis [J].
Hovels, A. M. ;
Heesakkers, R. A. M. ;
Adang, E. M. ;
Jager, G. J. ;
Strum, S. ;
Hoogeveen, Y. L. ;
Severens, J. L. ;
Barentsz, J. O. .
CLINICAL RADIOLOGY, 2008, 63 (04) :387-395
[10]   Prostate Cancer-PET Imaging Update [J].
Jetty, Sankarsh ;
Loftus, James Ryan ;
Patel, Abhinav ;
Gupta, Akshya ;
Puri, Savita ;
Dogra, Vikram .
CANCERS, 2023, 15 (03)