Effect of Ti-EG-Ni Dual-Metal Organic Crystal-Derived TiO2/C/Ni on the Hydrogen Storage Performance of MgH2

被引:0
作者
Wang, Lei [1 ]
Zhao, Baozhou [2 ,3 ]
Liu, Jiangchuan [4 ]
Yuan, Jianguang [5 ,7 ]
Zhu, Yunfeng [1 ]
Liu, Bogu [5 ]
Wu, Ying [5 ]
Li, Liquan [1 ]
Cheng, Yong [6 ]
Zhou, S. X. [7 ]
机构
[1] Nanjing Tech Univ, Coll Mat Sci & Engn, Jiangsu Collaborat Innovat Ctr Adv Inorgan Funct C, Nanjing 211816, Peoples R China
[2] Changzhou Univ, Inst Biomed Engn & Hlth Sci, Sch Pharm, Changzhou 213164, Peoples R China
[3] Changzhou Univ, Sch Med, Changzhou 213164, Peoples R China
[4] Changzhou Univ, Sch Mat Sci & Engn, Changzhou 213164, Peoples R China
[5] North China Elect Power Univ, Sch Energy Power & Mech Engn, Beijing 102206, Peoples R China
[6] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China
[7] Jiangsu JITRI Adv Energy & Mat Res Inst Co Ltd, Cent Iron & Steel Res Inst, Changzhou 213032, Peoples R China
基金
中国国家自然科学基金;
关键词
hydrogen storage; MgH2; TiO2/C/Ni nanorod catalyst; multivalent multielementcatalytic; electron transfer; NANOPARTICLES; CATALYSIS; CARBON; BEHAVIOR; SORPTION; CEO2;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To effectively address the kinetic sluggishness associated with MgH2, this study utilized Ti-EG-Ni dual-metal organic crystal as precursors and employed carburization to prepare the unique rod-shaped structure TiO2/C/Ni. The catalyst was incorporated into MgH2 by ball milling, demonstrating excellent hydrogen storage performance. The composite of MgH2-8 wt % TiO2/C/Ni exhibited a lower initial dehydrogenation temperature of 185 degrees C and a marked dehydrogenation activation energy of 60.537 kJ/mol. At 300 and 150 degrees C, it only required 300 s to release 6.17 wt % H-2 and absorb 5.72 wt % H-2 within 20 s, respectively. Additionally, the composites demonstrated excellent cycling stability, maintaining 94% reversible capacity after 50 cycles. Theoretical computations suggested that the in situ-generated metal Mg2Ni and semiconductor TiO2 created a Schottky heterojunction, which stimulated an internal electric field between Ni and TiO2, accelerating electron transfer. The strong electronic interaction between the catalyst and MgH2 weakened the Mg-H bond energy and elongated the Mg-H bond, promoting hydrogen dissociation. During hydrogen absorption and desorption, the composite material exhibited excellent hydrogen storage performance due to the uniform distribution of elements, the in situ-generated catalytic active sites (multivalent Ti and Mg2Ni/Mg2NiH4), and the support provided by carbon to the nanostructures. Our findings provide a deeper understanding of how highly active catalysts of metal oxides/C/Ni enhance the hydrogen storage performance of MgH2.
引用
收藏
页码:15274 / 15286
页数:13
相关论文
共 68 条
[1]   Hydrogen energy, economy and storage: Review and recommendation [J].
Abe, J. O. ;
Popoola, A. P. I. ;
Ajenifuja, E. ;
Popoola, O. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (29) :15072-15086
[2]   A review of hydrogen production and storage materials for efficient integrated hydrogen energy systems [J].
Alasali, Feras ;
Abuashour, Mohammed I. ;
Hammad, Waleed ;
Almomani, Derar ;
Obeidat, Amr M. ;
Holderbaum, William .
ENERGY SCIENCE & ENGINEERING, 2024, 12 (05) :1934-1968
[3]   Catalysis derived from three-dimensionally ordered macroporous Nb2O5 towards the hydrogen storage performance of magnesium hydride [J].
Chen, Yan ;
Shao, Yuting ;
Liu, Yana ;
Gao, Haiguang ;
Tang, Qinke ;
Zhu, Yunfeng ;
Zhang, Jiguang ;
Wang, Jun ;
Li, Liquan ;
Hu, Xiaohui .
FUEL, 2024, 364
[4]   Mg-TM (TM: Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism [J].
Cui, Jie ;
Liu, Jiangwen ;
Wang, Hui ;
Ouyang, Liuzhang ;
Sun, Dalin ;
Zhu, Min ;
Yao, Xiangdong .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (25) :9645-9655
[5]   Challenges of Decarbonizing Aviation via Hydrogen Propulsion: Technology Performance Targets and Energy System Trade-Offs [J].
Cybulsky, Anna ;
Allroggen, Florian ;
Shao-Horn, Yang ;
Mallapragada, Dharik S. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (40) :14615-14628
[6]   H2 Plasma Reducing Ni Nanoparticles for Superior Catalysis on Hydrogen Sorption of MgH2 [J].
Dan, Liang ;
Wang, Hui ;
Liu, Jiangwen ;
Ouyang, Liuzhang ;
Zhu, Min .
ACS APPLIED ENERGY MATERIALS, 2022, 5 (04) :4976-4984
[7]  
Dan M, 2011, REV ROUM CHIM, V56, P643
[8]   Study of doping effects with 3d and 4d-transition metals on the hydrogen storage properties of MgH2 [J].
El Khatabi, M. ;
Bhihi, M. ;
Naji, S. ;
Labrim, H. ;
Benyoussef, A. ;
El Kenz, A. ;
Loulidi, M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (08) :4712-4718
[9]   Graphene-anchored Ni6MnO8 nanoparticles with steady catalytic action to accelerate the hydrogen storage kinetics of MgH2 [J].
Guemou, Samuel ;
Wu, Fuying ;
Chen, Pengzhou ;
Zheng, Jiaguang ;
Bian, Ting ;
Shang, Danhong ;
Levtsev, Alexei Pavlovich ;
Zhang, Liuting .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (62) :23943-23955
[10]   The Scherrer equation versus the 'Debye-Scherrer equation' [J].
Holzwarth, Uwe ;
Gibson, Neil .
NATURE NANOTECHNOLOGY, 2011, 6 (09) :534-534