Chow-Witt rings and topology of flag varieties

被引:1
作者
Hudson, Thomas [1 ]
Matszangosz, akos K. [2 ]
Wendt, Matthias [3 ]
机构
[1] DGIST, Coll Transdisciplinary Studies, Daegu, South Korea
[2] HUN REN Alfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
[3] Berg Univ Wuppertal, Fachgrp Math & Informat, Wuppertal, Germany
关键词
STEENROD OPERATIONS; COHOMOLOGY;
D O I
10.1112/topo.70004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper computes the Witt-sheaf cohomology rings of partial flag varieties in type A in terms of the Pontryagin classes of the subquotient bundles. The proof is based on a Leray-Hirsch-type theorem for Witt-sheaf cohomology for the maximal rank cases, and a detailed study of cohomology ring presentations and annihilators of characteristic classes for the general case. The computations have consequences for the topology of real flag manifolds: we show that all torsion in the integral cohomology is 2-torsion, which was not known in full generality previously. This allows for example to compute the Poincar & eacute; polynomials of complete flag varieties for cohomology with twisted integer coefficients. The computations also allow to describe the Chow-Witt rings of flag varieties, and we sketch an enumerative application to counting flags satisfying multiple incidence conditions to given hypersurfaces.
引用
收藏
页数:78
相关论文
共 45 条
  • [1] The special linear version of the projective bundle theorem
    Ananyevskiy, Alexey
    [J]. COMPOSITIO MATHEMATICA, 2015, 151 (03) : 461 - 501
  • [2] COMPARING EULER CLASSES
    Asok, A.
    Fasel, J.
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2016, 67 (04) : 603 - 635
  • [3] A Gersten-Witt spectral sequence for regular schemes
    Balmer, P
    Walter, C
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2002, 35 (01): : 127 - 152
  • [4] WITT GROUPS OF GRASSMANN VARIETIES
    Balmer, Paul
    Calmes, Baptiste
    [J]. JOURNAL OF ALGEBRAIC GEOMETRY, 2012, 21 (04) : 601 - 642
  • [5] Borel A., 1967, TOPICS HOMOLOGY THEO, V36
  • [6] Bott R., 1982, Differential forms in algebraic topology, DOI [10.1007/978-1-4757-3951-0, DOI 10.1007/978-1-4757-3951-0]
  • [7] Schubert cells and representation theory
    Casian, L
    Stanton, RJ
    [J]. INVENTIONES MATHEMATICAE, 1999, 137 (03) : 461 - 539
  • [8] Dolgachev I. V., 2005, Incontr. Studio, V36, P55
  • [9] A unified formula for Steenrod operations in flag manifolds
    Duan, Haibao
    Zhao, Xuezhi
    [J]. COMPOSITIO MATHEMATICA, 2007, 143 (01) : 257 - 270
  • [10] Eisenbud D., 2016, 3264 ALL THAT A 2 CO, DOI DOI 10.1017/CBO9781139062046