Improved Binary Grey Wolf Optimization Approaches for Feature Selection Optimization

被引:0
|
作者
Khaseeb, Jomana Yousef [1 ]
Keshk, Arabi [2 ]
Youssef, Anas [2 ]
机构
[1] Palestine Tech Univ Kadoorie, Appl Comp Dept, POB 7, Ramallah, Palestine
[2] Menoufia Univ, Fac Comp & Informat, Comp Sci Dept, Shibin Al Kawm 32511, Egypt
来源
APPLIED SCIENCES-BASEL | 2025年 / 15卷 / 02期
关键词
swarm intelligence; feature selection; particle swarm optimization; grey wolf optimization; PARTICLE SWARM OPTIMIZATION; ALGORITHM; CLASSIFICATION;
D O I
10.3390/app15020489
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Feature selection is a preprocessing step for various classification tasks. Its objective is to identify the most optimal features in a dataset by eliminating redundant data while preserving the highest possible classification accuracy. Three improved binary Grey Wolf Optimization (GWO) approaches are proposed in this paper to optimize the feature selection process by enhancing the feature selection accuracy while selecting the least possible number of features. Each approach combines GWO with Particle Swarm Optimization (PSO) by implementing GWO followed by PSO. Afterwards, each approach manipulates the solutions obtained by both algorithms in a different way. The objective of this combination is to overcome the GWO stuck-in-local-optima problem that might occur by leveraging the PSO-wide search space exploration ability on the solutions obtained by GWO. Both S-shaped and V-shaped binary transfer functions were used to convert the continuous solutions obtained from each proposed approach to their corresponding binary versions. The three proposed approaches were evaluated using nine small-instance, high-dimensional, cancer-related human gene expression datasets. A set of comparisons were made against the original binary versions of both GWO and PSO algorithms and against eight state-of-the-art feature selection binary optimizers in addition to one of the recent binary optimizers that combines PSO with GWO. The evaluation results showed that one of the proposed S-shaped and V-shaped approaches achieved 0.9 and 0.95 average classification accuracy, respectively, while selecting the fewest number of features. The results also confirmed the superiority of one of the proposed V-shaped approaches when compared with the original binary GWO and PSO approaches. Moreover, the results confirmed the superiority, in most of the datasets, of one of the three approaches over the state-of-the-art approaches. Finally, the results revealed that the best approach in terms of classification accuracy, fitness value, and number of selected features had the highest computational complexity.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Binary grey wolf optimization approaches for feature selection
    Emary, E.
    Zawba, Hossam M.
    Hassanien, Aboul Ella
    NEUROCOMPUTING, 2016, 172 : 371 - 381
  • [2] Binary Optimization Using Hybrid Grey Wolf Optimization for Feature Selection
    Al-Tashi, Qasem
    Kadir, Said Jadid Abdul
    Rais, Helmi Md
    Mirjalili, Seyedali
    Alhussian, Hitham
    IEEE ACCESS, 2019, 7 : 39496 - 39508
  • [3] Swarm Intelligence-Based Feature Selection: An Improved Binary Grey Wolf Optimization Method
    Li, Wenqu
    Kang, Hui
    Feng, Tie
    Li, Jiahui
    Yue, Zhiru
    Sun, Geng
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT III, 2021, 12817 : 98 - 110
  • [4] A Binary Multi-objective Grey Wolf Optimization for Feature Selection
    Jiang, Yongqi
    Jin, Chu
    Zhang, Quan
    Hu, Biao
    Tang, Zhenzhou
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, KSEM 2024, 2024, 14885 : 395 - 406
  • [5] A fusion of binary grey wolf optimization algorithm with opposition and weighted positioning for feature selection
    Tripathi A.
    Bharti K.K.
    Ghosh M.
    International Journal of Information Technology, 2023, 15 (8) : 4469 - 4479
  • [6] Chain hybrid feature selection algorithm based on improved Grey Wolf Optimization algorithm
    Bai, Xiaotong
    Zheng, Yuefeng
    Lu, Yang
    Shi, Yongtao
    PLOS ONE, 2024, 19 (10):
  • [7] Improved Binary Grey Wolf Optimizer and Its application for feature selection
    Hu, Pei
    Pan, Jeng-Shyang
    Chu, Shu-Chuan
    KNOWLEDGE-BASED SYSTEMS, 2020, 195
  • [8] Face Recognition Based on Grey Wolf Optimization for Feature Selection
    Saabia, Abd AL-BastRashed
    El-Hafeez, TarekAbd
    Zaki, Alaa M.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2018, 2019, 845 : 273 - 283
  • [9] Binary butterfly optimization approaches for feature selection
    Arora, Sankalap
    Anand, Priyanka
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 116 : 147 - 160
  • [10] Multi-objective binary grey wolf optimization for feature selection based on guided mutation strategy
    Li, Xiaobo
    Fu, Qiyong
    Li, Qi
    Ding, Weiping
    Lin, Feilong
    Zheng, Zhonglong
    APPLIED SOFT COMPUTING, 2023, 145