Diffusion of Ge Donors in β-Ga2O3

被引:0
|
作者
Hommedal, Ylva K. [1 ]
Frodason, Ymir Kalmann [1 ]
Vines, Lasse [1 ]
Johansen, Klaus Magnus H. [1 ]
机构
[1] Univ Oslo, Dept Phys, Ctr Mat Sci & Nanotechnol, POB 1048, N-0316 Oslo, Norway
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2024年
关键词
density functional theory calculations; diffusion; gallium oxide; oxide semiconductor; secondary-ion mass spectrometry; 1ST-PRINCIPLES CALCULATIONS; DOPED BETA-GA2O3; DEFECTS; SI;
D O I
10.1002/pssb.202400355
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Diffusion of Ge donors in beta-Ga2O3 is studied using a combination of secondary-ion mass spectrometry, diffusion simulations, and first-principles calculations, and compared to previous studies on Sn diffusion. Ge is implanted into ((2) over bar01)-oriented samples and annealed at temperatures from 900 to 1050 degrees C for a total of 8 h. From previous first-principles calculations, Sn is predicted to diffuse via the formation of a mobile complex with V-Ga that migrates through a sequence of exchange and rotation jumps. Herein, it is similarly predicted that Ge diffusion is mediated by V-Ga. However, the microscopic mechanism differs, as Ge can diffuse more easily through exchange combined with complex dissociation, rather than rotational jumps. This is explained by the difference in Ga-site preference of Ge compared to Sn, and the three-split mechanism that enables low migration barriers for V-Ga. The dissociation mechanism leads to a considerably faster transport for Ge as compared to Sn. The experimentally obtained Ge diffusion profiles are successfully fitted using a reaction-diffusion model based on the predicted diffusion mechanism, yielding a migration barrier of 2.5 +/- 0.2 eV for the complex. The 2.72 eV obtained from first-principles calculations is in good agreement with this value.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Ge doping of β-Ga2O3 by MOCVD
    Alema, Fikadu
    Seryogin, George
    Osinsky, Alexei
    Osinsky, Andrei
    APL MATERIALS, 2021, 9 (09):
  • [2] Diffusion of dopants and impurities in β-Ga2O3
    Sharma, Ribhu
    Law, Mark E.
    Ren, Fan
    Polyakov, Alexander Y.
    Pearton, Stephen J.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2021, 39 (06):
  • [3] Ge-Doped β-Ga2O3 MOSFETs
    Moser, Neil
    McCandless, Jonathan
    Crespo, Antonio
    Leedy, Kevin
    Green, Andrew
    Neal, Adam
    Mou, Shin
    Ahmadi, Elaheh
    Speck, James
    Chabak, Kelson
    Peixoto, Nathalia
    Jessen, Gregg
    IEEE ELECTRON DEVICE LETTERS, 2017, 38 (06) : 775 - 778
  • [4] Vertical Geometry, 2-A Forward Current Ga2O3 Schottky Rectifiers on Bulk Ga2O3 Substrates
    Yang, Jiancheng
    Ren, Fan
    Pearton, Steve J.
    Kuramata, Akito
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (07) : 2790 - 2796
  • [5] Transition Metal Impurities as Shallow Donors in β-Ga2O3
    Karbasizadeh, Siavash
    Mu, Sai
    Turiansky, Mark E.
    van de Walle, Chris G.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2024, 18 (06):
  • [6] MOCVD Growth of β-Ga2O3 on (001) Ga2O3 Substrates
    Meng, Lingyu
    Yu, Dongsu
    Huang, Hsien-Lien
    Chae, Chris
    Hwang, Jinwoo
    Zhao, Hongping
    CRYSTAL GROWTH & DESIGN, 2024, 24 (09) : 3737 - 3745
  • [7] Twin-induced phase transition from β-Ga2O3 to α-Ga2O3 in Ga2O3 thin films
    Choi, Byeongdae
    Allabergenov, Bunyod
    Lyu, Hong-Kun
    Lee, Seong Eui
    APPLIED PHYSICS EXPRESS, 2018, 11 (06)
  • [8] Luminescence and Conductivity of β-Ga2O3 and β-Ga2O3:Mg Single Crystals
    Vasyltsiv, V.
    Kostyk, L.
    Tsvetkova, O.
    Lys, R.
    Kushlyk, M.
    Pavlyk, B.
    Luchechko, A.
    ACTA PHYSICA POLONICA A, 2022, 141 (04) : 312 - 318
  • [9] Ga vacancies in β-Ga2O3: split or not?
    Tuomisto, Filip
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2023, 62 (SF)
  • [10] Growth of β-Ga2O3 Thin Films on Ga2O3/GaN/Sapphire Template
    Jiao T.
    Li Z.-M.
    Wang Q.
    Dong X.
    Zhang Y.-T.
    Bai S.
    Zhang B.-L.
    Du G.-T.
    Faguang Xuebao/Chinese Journal of Luminescence, 2020, 41 (03): : 281 - 287