Parametric Estimation of Directional Wave Spectra from Moored FPSO Motion Data Using Optimized Artificial Neural Networks

被引:2
作者
Kwon, Do-Soo [1 ]
Kim, Sung-Jae [2 ]
Jin, Chungkuk [3 ]
Kim, Moohyun [1 ]
机构
[1] Texas A&M Univ, Dept Ocean Engn, Haynes Engn Bldg, 727 Ross St, College Stn, TX 77843 USA
[2] Natl Inst Fisheries Sci, Fisheries Engn Div, 216 Gijanghaean Ro, Busan 46083, South Korea
[3] Florida Inst Technol, Dept Ocean Engn & Marine Sci, Melbourne, FL 32901 USA
关键词
directional wave spectrum; inverse wave estimation; artificial neural network; machine learning; synthetic data; digital twin;
D O I
10.3390/jmse13010069
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This paper introduces a comprehensive, data-driven framework for parametrically estimating directional ocean wave spectra from numerically simulated FPSO (Floating Production Storage and Offloading) vessel motions. Leveraging a mid-fidelity digital twin of a spread-moored FPSO vessel in the Guyana Sea, this approach integrates a wide range of statistical values calculated from the time histories of vessel responses-displacements, angular velocities, and translational accelerations. Artificial neural networks (ANNs), trained and optimized through hyperparameter tuning and feature selection, are employed to estimate wave parameters including the significant wave height, peak period, main wave direction, enhancement parameter, and directional-spreading factor. A systematic correlation analysis ensures that informative input features are retained, while extensive sensitivity tests confirm that richer input sets notably improve predictive accuracy. In addition, comparisons against other machine learning (ML) methods-such as Support Vector Machines, Random Forest, Gradient Boosting, and Ridge Regression-demonstrate the present ANN model's superior ability to capture intricate nonlinear interdependencies between vessel motions and environmental conditions.
引用
收藏
页数:25
相关论文
共 38 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
Bisinotto G.A., 2021, Intelligent Systems, BRACIS 2021, P294, DOI DOI 10.1007/978-3-030-91699-221
[3]   The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system [J].
Chassignet, Eric P. ;
Hurlburt, Harley E. ;
Smedstad, Ole Martin ;
Halliwell, George R. ;
Hogan, Patrick J. ;
Wallcraft, Alan J. ;
Baraille, Remy ;
Bleck, Rainer .
JOURNAL OF MARINE SYSTEMS, 2007, 65 (1-4) :60-83
[4]   Estimation of on-site directional wave spectra using measured hull stresses on 14,000 TEU large container ships [J].
Chen, Xi ;
Okada, Tetsuo ;
Kawamura, Yasumi ;
Mitsuyuki, Taiga .
JOURNAL OF MARINE SCIENCE AND TECHNOLOGY, 2020, 25 (03) :690-706
[5]   A Novel Densely Connected Convolutional Neural Network for Sea-State Estimation Using Ship Motion Data [J].
Cheng, Xu ;
Li, Guoyuan ;
Ellefsen, Andre Listou ;
Chen, Shengyong ;
Hildre, Hans Petter ;
Zhang, Houxiang .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (09) :5984-5993
[6]  
Duz B., 2019, P PRACT DES SHIPS OT, VVolume III, P657
[7]   Design optimization of a multi-layer porous wave absorber using an artificial neural network model [J].
George, Arun ;
Poguluri, Sunny Kumar ;
Kim, Jeongrok ;
Cho, Il Hyoung .
OCEAN ENGINEERING, 2022, 265
[8]   Data-driven sea state estimation for vessels using multi-domain features from motion responses [J].
Han, Peihua ;
Li, Guoyuan ;
Skjong, Stian ;
Wu, Baiheng ;
Zhang, Houxiang .
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, :2120-2126
[9]   Directional wave spectrum estimation with ship motion responses using adversarial networks [J].
Han, Peihua ;
Li, Guoyuan ;
Skjong, Stian ;
Zhang, Houxiang .
MARINE STRUCTURES, 2022, 83
[10]   An Uncertainty-Aware Hybrid Approach for Sea State Estimation Using Ship Motion Responses [J].
Han, Peihua ;
Li, Guoyuan ;
Cheng, Xu ;
Skjong, Stian ;
Zhang, Houxiang .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (02) :891-900