Energy-Constrained Satellite Edge Computing for Satellite-Terrestrial Integrated Networks

被引:0
作者
Cheng, Lei [1 ]
Feng, Gang [1 ,2 ]
Sun, Yao [3 ]
Qin, Shuang [1 ,2 ]
Wang, Feng [4 ]
Quek, Tony Q. S. [4 ]
机构
[1] Univ Elect Sci & Technol China, Natl Key Lab Wireless Commun, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
[3] Univ Glasgow, James Watt Sch Engn, Glasgow G12 8QQ, Scotland
[4] Singapore Univ Technol & Design, Informat Syst Technol & Design Pillar, Singapore 487372, Singapore
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Satellites; Low earth orbit satellites; Optimization; Resource management; Vehicle dynamics; Stochastic processes; Edge computing; Convex functions; Computational modeling; Space-air-ground integrated networks; Computation offloading; satellite edge computing; satellite-terrestrial integrated network; RESOURCE-ALLOCATION; COMPUTATION; HANDOVER;
D O I
10.1109/TVT.2024.3483203
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Satellite edge computing (SEC) has emerged as an innovative paradigm for future satellite-terrestrial integrated networks (STINs), expanding computation services by sinking computing capabilities into Low-Earth-Orbit (LEO) satellites. However, the mobility of LEO satellites poses two key challenges to SEC: 1) constrained onboard computing and transmission capabilities caused by limited and dynamic energy supply, and 2) stochastic task arrivals within the satellites' coverage and time-varying channel conditions. To tackle these issues, it is imperative to design an optimal SEC offloading strategy that effectively exploits the available energy of LEO satellites to fulfill competing task demands for SEC. In this paper, we propose a dynamic offloading strategy (DOS) with the aim to minimize the overall completion time of arriving tasks in an SEC-assisted STIN, subject to the long-term energy constraints of the LEO satellite. Leveraging Lyapunov optimization theory, we first convert the original long-term stochastic problem into multiple deterministic one-slot problems parameterized by current system states. Then we use sub-problem decomposition to jointly optimize the task offloading, computing, and communication resource allocation strategies. We theoretically prove that DOS achieves near-optimal performance. Numerical results demonstrate that DOS significantly outperforms the other four baseline approaches in terms of task completion time and dropping rate.
引用
收藏
页码:3359 / 3374
页数:16
相关论文
共 50 条
  • [31] Deep Reinforcement Learning-based Task Offloading in Satellite-Terrestrial Edge Computing Networks
    Zhu, Dali
    Liu, Haitao
    Li, Ting
    Sun, Jiyan
    Liang, Jie
    Zhang, Hangsheng
    Geng, Liru
    Liu, Yudong
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [32] Cost-Effective Hybrid Computation Offloading in Satellite-Terrestrial Integrated Networks
    Zhang, Xinyuan
    Liu, Jiang
    Xiong, Zehui
    Huang, Yudong
    Zhang, Ran
    Mao, Shiwen
    Han, Zhu
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (22): : 36786 - 36800
  • [33] DDPG-Based Task Offloading in Satellite-Terrestrial Collaborative Edge Computing Networks
    Dong, Qing
    Xu, Xiaodong
    Han, Shujun
    Liu, Rui
    Zhang, XueFei
    2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 1541 - 1546
  • [34] Deep Reinforcement Learning for Privacy-Preserving Task Offloading in Integrated Satellite-Terrestrial Networks
    Lan, Wenjun
    Chen, Kongyang
    Li, Yikai
    Cao, Jiannong
    Sahni, Yuvraj
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (10) : 9678 - 9691
  • [35] Secure Energy Efficiency Maximization in Cognitive Satellite-Terrestrial Networks
    Lu, Weixin
    An, Kang
    Liang, Tao
    Zheng, Gan
    Chatzinotas, Symeon
    IEEE SYSTEMS JOURNAL, 2021, 15 (02): : 2382 - 2385
  • [36] Joint Cache Placement and Cooperative Multicast Beamforming in Integrated Satellite-Terrestrial Networks
    Han, Dairu
    Liao, Wenhe
    Peng, Haixia
    Wu, Huaqing
    Wu, Wen
    Shen, Xuemin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (03) : 3131 - 3143
  • [37] Joint Two-Tier User Association and Resource Management for Integrated Satellite-Terrestrial Networks
    Nguyen-Kha, Hung
    Nguyen Ha, Vu
    Lagunas, Eva
    Chatzinotas, Symeon
    Grotz, Joel
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (11) : 16648 - 16665
  • [38] Radio resource allocation for energy efficiency maximization in satellite-terrestrial integrated networks
    Fakhar, Umair
    Khan, Humayun Zubair
    Tariq, Zarrar
    Ali, Mudassar
    Akhtar, Ahmad Naeem
    Naeem, Muhammad
    Wakeel, Abdul
    AD HOC NETWORKS, 2023, 138
  • [39] Dynamic Discrete Topology Design and Routing for Satellite-Terrestrial Integrated Networks
    Li, Shuyang
    Wu, Qiang
    Wang, Ran
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2024, 32 (05) : 3840 - 3853
  • [40] Federated split learning for sequential data in satellite-terrestrial integrated networks
    Jiang, Weiwei
    Han, Haoyu
    Zhang, Yang
    Mu, Jianbin
    INFORMATION FUSION, 2024, 103