Semi-Supervised Learning With Kolmogorov-Arnold Network for MRI Cardiac Segmentation

被引:0
作者
Li, Congsheng [1 ]
Xu, Xu [1 ,2 ]
机构
[1] China Acad Informat & Commun Technol, China Telecommun Technol Lab, Beijing 100191, Peoples R China
[2] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110004, Peoples R China
基金
中国国家自然科学基金;
关键词
Image segmentation; Perturbation methods; Magnetic resonance imaging; Supervised learning; Training; Feature extraction; Deep learning; Convolution; Unsupervised learning; Kolmogorov-Arnold network (KAN); MRI cardiac segmentation; semi-supervised learning (SSL); ATLASES;
D O I
10.1109/TIM.2025.3550246
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
MRI cardiac segmentation plays a vital role for the diagnosis of cardiovascular disease. Recently, many studies have developed semi-supervised learning (SSL) algorithms for this purpose. However, two challenges are still unsolved, i.e., linear pattern modeling and limited perturbation space. To this end, we develop KS-Net, an innovative framework for MRI cardiac segmentation, incorporating the Kolmogorov-Arnold network (KAN) module and an SSL-based perturbation strategy. Specifically, this work designs a U-shaped network with the KAN module to be compatible with nonlinear high-level features. In addition, we introduce a dual-stream perturbation approach to investigate the predefined perturbation space at the image level and leverage SSL for discriminative representations. Our proposed KS-Net is trained and tested on MyoPS 2020 and automated cardiac diagnosis challenge (ACDC) datasets. Experimental results indicated that it effectively outperforms existing state-of-the-art (SOTA) methods in MRI cardiac segmentation.
引用
收藏
页数:11
相关论文
共 58 条
[1]   Addressing Class Imbalance in Semi-supervised Image Segmentation: A Study on Cardiac MRI [J].
Basak, Hritam ;
Ghosal, Sagnik ;
Sarkar, Ram .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII, 2022, 13438 :224-233
[2]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[3]  
Berthelot D., 2019, P INT C LEARN REPR
[4]  
Berthelot D, 2019, ADV NEUR IN, V32
[5]  
Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
[6]   DO-Conv: Depthwise Over-Parameterized Convolutional Layer [J].
Cao, Jinming ;
Li, Yangyan ;
Sun, Mingchao ;
Chen, Ying ;
Lischinski, Dani ;
Cohen-Or, Daniel ;
Chen, Baoquan ;
Tu, Changhe .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 :3726-3736
[7]  
Caron M, 2020, ADV NEUR IN, V33
[8]  
Chen J., 2021, PREPRINT
[9]   Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision [J].
Chen, Xiaokang ;
Yuan, Yuhui ;
Zeng, Gang ;
Wang, Jingdong .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :2613-2622
[10]   A novel end-to-end deep learning solution for coronary artery segmentation from CCTA [J].
Dong, Caixia ;
Xu, Songhua ;
Li, Zongfang .
MEDICAL PHYSICS, 2022, 49 (11) :6945-6959