Derivation of an artificial intelligence-based electrocardiographic model for the detection of acute coronary occlusive myocardial infarction

被引:0
作者
Diaz-Herrera, Braiana A. [1 ]
Roman-Rangel, Edgar [2 ]
Castro-Garcia, Carlos A. [1 ]
Martinez, Daniel Sierra-Lara [1 ]
Gopar-Nieto, Rodrigo [1 ]
Velez-Talavera, Karen G. [1 ]
Espinosa-Martinez, Maria P.
March-Mifsut, Santiago
Latapi-Ruiz-Esparza, Ximena [1 ]
Preciado-Gutierrez, Oscar U. [1 ,3 ]
Alba-Valencia, Santiago [1 ,3 ]
Sanchez-Alfaro, Hector A. [1 ]
Gonzalez-Pacheco, Hector [1 ]
Arias-Mendoza, Alexandra [1 ]
Araiza-Garaygordobil, Diego [1 ]
机构
[1] Inst Nacl Cardiol Ignacio Chavez, Unidad Coronaria, Mexico City, Mexico
[2] Inst Tecnol Autonomo Mexico ITAM, Dept Acad Comp, Mexico City, Mexico
[3] Fdn Mexicana Salud FUNSALUD, Coordinac Nuevas Tecnol, Ciudad De Mexico, Mexico
来源
ARCHIVOS DE CARDIOLOGIA DE MEXICO | 2025年
关键词
Occlusion myocardial infarction; NSTEMI; Artificial intelligence; Acute coronary syndrome; Deep learning; Transfer learning; ARTERY;
D O I
10.24875/ACM.24000195
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objectives: We aimed to assess the performance of an artificial intelligence-electrocardiogram (AI-ECG)-based model capable of detecting acute coronary occlusion myocardial infarction (ACOMI) in the setting of patients with acute coronary syndrome (ACS). Methods: This was a prospective, observational, longitudinal, and single-center study including patients with the initial diagnosis of ACS (both ST-elevation acute myocardial infarction [STEMI] & non-ST-segment elevation myocardial infarction [NSTEMI]). To train the deep learning model in recognizing ACOMI, manual digitization of a patient's ECG was conducted using smartphone cameras of varying quality. We relied on the use of convolutional neural networks as the AI models for the classification of ECG examples. ECGs were also independently evaluated by two expert cardiologists blinded to clinical outcomes; each was asked to determine (a) whether the patient had a STEMI, based on universal criteria or (b) if STEMI criteria were not met, to identify any other ECG finding suggestive of ACOMI. ACOMI was defined by coronary angiography findings meeting any of the following three criteria: (a) total thrombotic occlusion, (b) TIMI thrombus grade 2 or higher + TIMI grade flow 1 or less, or (c) the presence of a subocclusive lesion (> 95% angiographic stenosis) with TIMI grade flow < 3. Patients were classified into four groups: STEMI + ACOMI, NSTEMI + ACOMI, STEMI + non-ACOMI, and NSTEMI + non-ACOMI. Results: For the primary objective of the study, AI outperformed human experts in both NSTEMI and STEMI, with an area under the curve (AUC) of 0.86 (95% confidence interval [CI] 0.75-0.98) for identifying ACOMI, compared with ECG experts using their experience (AUC: 0.33, 95% CI 0.17-0.49) or under universal STEMI criteria (AUC: 0.50, 95% CI 0.35-0.54), (p value for AUC receiver operating characteristic comparison < 0.001). The AI model demonstrated a PPV of 0.84 and an NPV of 1.0. Conclusion: Our AI-ECG model demonstrated a higher diagnostic precision for the detection of ACOMI compared with experts and the use of STEMI criteria. Further research and external validation are needed to understand the role of AI-based models in the setting of ACS.
引用
收藏
页数:10
相关论文
共 22 条
  • [1] Machine learning for ECG diagnosis and risk stratification of occlusion myocardial infarction
    Al-Zaiti, Salah S.
    Martin-Gill, Christian
    Zegre-Hemsey, Jessica K.
    Bouzid, Zeineb
    Faramand, Ziad
    Alrawashdeh, Mohammad O.
    Gregg, Richard E.
    Helman, Stephanie
    Riek, Nathan T.
    Kraevsky-Phillips, Karina
    Clermont, Gilles
    Akcakaya, Murat
    Sereika, Susan M.
    Van Dam, Peter
    Smith, Stephen W.
    Birnbaum, Yochai
    Saba, Samir
    Sejdic, Ervin
    Callaway, Clifton W.
    [J]. NATURE MEDICINE, 2023, 29 (07) : 1804 - +
  • [2] 2023 ESC Guidelines for the management of acute coronary syndromes
    Byrne, Robert A.
    Rossello, Xavier
    Coughlan, J. J.
    Barbato, Emanuele
    Berry, Colin
    Chieffo, Alaide
    Claeys, Marc J.
    Dan, Gheorghe-Andrei
    Dweck, Marc R.
    Galbraith, Mary
    Gilard, Martine
    Hinterbuchner, Lynne
    Jankowska, Ewa A.
    Juni, Peter
    Kimura, Takeshi
    Kunadian, Vijay
    Leosdottir, Margret
    Lorusso, Roberto
    Pedretti, Roberto F. E.
    Rigopoulos, Angelos G.
    Gimenez, Maria Rubini
    Thiele, Holger
    Vranckx, Pascal
    Wassmann, Sven
    Wenger, Nanette Kass
    Ibanez, Borja
    ESC Sci Document Grp
    [J]. EUROPEAN HEART JOURNAL, 2023, 44 (38) : 3720 - 3826
  • [3] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [4] Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in healthcare
    Goh, Kim Huat
    Wang, Le
    Yeow, Adrian Yong Kwang
    Poh, Hermione
    Li, Ke
    Yeow, Joannas Jie Lin
    Tan, Gamaliel Yu Heng
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [5] 2021 AHA/ACC/ASE/CHEST/SAEM/ SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: Executive Summary A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines
    Gulati, Martha
    Levy, Phillip D.
    Mukherjee, Debabrata
    Amsterdam, Ezra
    Bhatt, Deepak L.
    Birtcher, Kim K.
    Blankstein, Ron
    Boyd, Jack
    Bullock-Palmer, Renee P.
    Conejo, Theresa
    Diercks, Deborah B.
    Gentile, Federico
    Greenwood, John P.
    Hess, Erik P.
    Hollenberg, Steven M.
    Jaber, Wael A.
    Jneid, Hani
    Joglar, Jose A.
    Morrow, David A.
    O'Connor, Robert E.
    Ross, Michael A.
    Shaw, Leslee J.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 78 (22) : 2218 - 2261
  • [6] International evaluation of an artificial intelligence-powered electrocardiogram model detecting acute coronary occlusion myocardial infarction
    Herman, Robert
    Meyers, Harvey Pendell
    Smith, Stephen W.
    Bertolone, Dario T.
    Leone, Attilio
    Bermpeis, Konstantinos
    Viscusi, Michele M.
    Belmonte, Marta
    Demolder, Anthony
    Boza, Vladimir
    Vavrik, Boris
    Kresnakova, Viera
    Iring, Andrej
    Martonak, Michal
    Bahyl, Jakub
    Kisova, Timea
    Schelfaut, Dan
    Vanderheyden, Marc
    Perl, Leor
    Aslanger, Emre K.
    Hatala, Robert
    Wojakowski, Wojtek
    Bartunek, Jozef
    Barbato, Emanuele
    [J]. EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (02): : 123 - 133
  • [7] On evaluation metrics for medical applications of artificial intelligence
    Hicks, Steven A.
    Struemke, Inga
    Thambawita, Vajira
    Hammou, Malek
    Riegler, Michael A.
    Halvorsen, Pal
    Parasa, Sravanthi
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [8] Prevalence and outcome of patients with non-ST segment elevation myocardial infarction with occluded "culprit" artery - a systemic review and meta-analysis
    Hung, Chi-Sheng
    Chen, Ying-Hsien
    Huang, Ching-Chang
    Lin, Mao-Shin
    Yeh, Chih-Fan
    Li, Hung-Yuan
    Kao, Hsien-Li
    [J]. CRITICAL CARE, 2018, 22
  • [9] A Deep CNN Approach with Transfer Learning for Image Recognition
    Iorga, Cristian
    Neagoe, Victor-Emil
    [J]. PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI-2019), 2019,
  • [10] Development and validation of machine learning algorithms based on electrocardiograms for cardiovascular diagnoses at the population level
    Kalmady, Sunil Vasu
    Salimi, Amir
    Sun, Weijie
    Sepehrvand, Nariman
    Nademi, Yousef
    Bainey, Kevin
    Ezekowitz, Justin
    Hindle, Abram
    Mcalister, Finlay
    Greiner, Russel
    Sandhu, Roopinder
    Kaul, Padma
    [J]. NPJ DIGITAL MEDICINE, 2024, 7 (01):