Novel hierarchical α structure enhanced strength-ductility synergy in metastable (3 titanium alloy

被引:0
|
作者
Yang, Hao [1 ]
Zhu, Mingxiang [1 ]
Chen, Nana [2 ]
Xie, Sisi [1 ]
Yu, Yonghao [1 ]
Wang, Guodong [1 ]
Wang, Chuanyun [1 ]
Kou, Hongchao [1 ]
机构
[1] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Key Lab Archaeol Explorat & Cultural Heritage Cons, Minist Educ, Xian 710072, Shaanxi, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2025年 / 925卷
基金
中国国家自然科学基金;
关键词
Metastable (3 titanium alloys; Hierarchical structure; Mechanical properties; Back-stress strengthening; Deformation mechanisms; MECHANICAL-PROPERTIES; VARIANT SELECTION; MICROSTRUCTURAL EVOLUTION; TENSILE PROPERTIES; GRAIN-BOUNDARIES; BETA; PHASE; BEHAVIOR; PRECIPITATION; DEFORMATION;
D O I
10.1016/j.msea.2025.147877
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Heterogeneous structures and hierarchical structures are effective methods for overcoming strength-ductility trade-off in metals. In current study, a heterogeneous (3 structure, containing heterogeneity of grain size and defects (including dislocations and low-angle grain boundaries), was obtained through hot rolling and partial recrystallization processes in metastable (3 titanium alloy Ti-7Mo-3Nb-3Cr-3Al. On this basis, a novel hierarchical alpha structure was constructed through a simple aging process. The hierarchical structure couples the heterogeneous (3 lamella structure with a combination of small and large alpha phase, including alternately distributed micron-sized phases (alpha WGBs, alpha l) and submicron-sized alpha s phases in equiaxed grain regions, and submicron-sized phases (alpha l, alpha p) and nanosized alpha s phases in deformed grain regions. An excellent strength-ductility synergy was achieved in the designed hierarchical alpha structure, with a yield strength of 1360 MPa, tensile strength of 1430 MPa, and an elongation of 8.1 % at room temperature. The hierarchical alpha structure facilitates strain distribution and transfer during deformation, and could deform compatibly with the (3 matrix. Simultaneously, the grain boundary Widmansta<spacing diaeresis>tten alpha WGBs phase reinforces grain boundary regions prone to failure, ensuring the alloy retains plasticity while enhancing strength. Back stress strengthening has been proven to be the most significant factor that enhance strength. This study provides a new simple approach for constructing hierarchical structure in metastable (3 titanium alloys, offering meaningful insights into achieving strength-ductility synergy.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Enhanced strength-ductility synergy in a Ta-doped CoCrNi medium-entropy alloy with a dual heterogeneous structure
    Xu, Dingfeng
    Zhang, Haitao
    Wang, Mingliang
    Lu, Yiping
    Chen, Xiaohu
    Ren, Zheng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 860
  • [42] A Co-rich chemically complex intermetallic alloy with extraordinary strength-ductility synergy
    Zhao, Y. L.
    Xiao, W. C.
    Zhao, Z. K.
    Li, Q.
    Cui, J.
    Luan, J. H.
    Liu, C. T.
    Liaw, P. K.
    Yang, T.
    SCRIPTA MATERIALIA, 2023, 229
  • [43] High strength-ductility synergy in heterogeneous multilayer medium entropy alloy/maraging materials by step ageing
    Wang, Jiao
    Yu, Wenxing
    Liu, Baoxi
    Ding, Jiale
    Yin, Fuxing
    Hu, Ning
    MATERIALS CHARACTERIZATION, 2025, 221
  • [44] Hierarchical structure in Al-Cu alloys to promote strength/ductility synergy
    Wu, S. H.
    Xue, H.
    Yang, C.
    Kuang, J.
    Zhang, P.
    Zhang, J. Y.
    Li, Y. J.
    Roven, Hans J.
    Liu, G.
    Sun, J.
    SCRIPTA MATERIALIA, 2021, 202
  • [45] Multiple minor elements improve strength-ductility synergy of a high-entropy alloy
    Zhu, Shuya
    Gan, Kefu
    Yan, Dingshun
    Han, Liuliu
    Wu, Pengfei
    Li, Zhiming
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 840
  • [46] Enhanced strength-ductility synergy in Ti-4Al-5Mo-5V-5Cr-1Nb with hierarchical microstructure
    Wang, T.
    Yong, F.
    Liu, X. H.
    Wang, K. X.
    Du, Y. X.
    Zhao, F.
    MATERIALS LETTERS-X, 2022, 16
  • [47] Strength-ductility synergy in a wrought AZ80 magnesium alloy by microstructure engineering
    Koushki, Ali
    Jalali, Alireza
    Rasooli, Novin
    Heydarinia, Ali
    Geranmayeh, Ali
    Mehranpour, Mohammad Sajad
    Shahmir, Hamed
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 889
  • [48] Enhanced strength-ductility synergy via novel bifunctional nano-precipitates in a high-entropy alloy
    Liu, Liyuan
    Zhang, Yang
    Li, Junpeng
    Fan, Mingyu
    Wang, Xiyu
    Wu, Guangchuan
    Yang, Zhongbo
    Luan, Junhua
    Jiao, Zengbao
    Liu, Chain Tsuan
    Liaw, Peter K.
    Zhang, Zhongwu
    INTERNATIONAL JOURNAL OF PLASTICITY, 2022, 153
  • [49] Enhanced strength-ductility synergy in a wire and arc additively manufactured Mg alloy via tuning interlayer dwell time
    Ma, Dong
    Xu, Chunjie
    Sui, Shang
    Tian, Jun
    Guo, Can
    Wu, Xiangquan
    Zhang, Zhongming
    Shechtman, Dan
    Remennik, Sergei
    JOURNAL OF MAGNESIUM AND ALLOYS, 2023, 11 (12) : 4696 - 4709
  • [50] Enhanced strength-ductility synergy in a gradient hetero-structured CrCoNi medium-entropy alloy
    Feng, Hangqi
    Zhang, Hangzhou
    He, Zhenghong
    Zhou, Lingling
    Zhang, Zihan
    Yang, Muxin
    Li, Weijie
    Wu, Xiaolei
    Yuan, Fuping
    Li, Ying
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 7491 - 7502