Improving Classification Performance of Spatial Filters in Mammographic Microcalcifications Images Using Persistent Homology

被引:0
作者
Malek, Aminah Abdul [1 ,2 ]
Alias, Mohd Almie [1 ]
Razak, Fatimah Abdul [1 ]
Norani, Mohd Salmi Md [1 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, Bangi 43600, Selangor, Malaysia
[2] Univ Teknol MARA UiTM, Coll Comp Informat & Math, Negeri Sembilan Branch, Math Sci Studies, Seremban Campus, Seremban 70300, Negeri Sembilan, Malaysia
来源
MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES | 2024年 / 20卷 / 06期
关键词
Spatial filter; breast cancer; classification; mammogram; persistent homology;
D O I
10.11113/mjfas.v20n6.3714
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Noise and artefacts in mammogram images can obscure important indicators of microcalcifications, complicating accurate diagnosis. While traditional spatial filters can reduce noise and are effective to some extent, they often fail to enhance features crucial for classification. This study uses persistent homology (PH) to evaluate and improve the classification performance of various spatial filters on mammogram images. The evaluation process involves converting filtered images into persistence diagrams (PDs) to capture topological features. These diagrams are then vectorised into PH features for classification using a neural network classifier. This study also examines further filtering of PDs from filtered images to enhance classification performance. Using the Digital Database for Screening Mammography (DDSM) and Mammographic Image Analysis Society (MIAS) datasets, we evaluate Median, Wiener, Gaussian, and Bilateral filters alone and integrate them with PH-based filtering. Results show significant classification improvements, with Wiener filters achieving 96.33% accuracy on the DDSM dataset (up from 57.38%) and Gaussian filters reaching 85.33% on the MIAS dataset (up from 73.33%). These findings demonstrate the potential of PH-based filters to enhance diagnostic accuracy in breast cancer detection by refining topological features and effectively reducing noise.
引用
收藏
页码:1288 / 1307
页数:20
相关论文
共 50 条
[21]   IMPROVING SVM CLASSIFICATION ACCURACY USING A HIERARCHICAL APPROACH FOR HYPERSPECTRAL IMAGES [J].
Demir, Beguem ;
Erturk, Sarp .
2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, :2849-2852
[22]   Analysis of Spatial and Spatiotemporal Anomalies Using Persistent Homology: Case Studies with COVID-19 Data [J].
Hickok, Abigail ;
Needell, Deanna ;
Porter, Mason A. .
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2022, 4 (03) :1116-1144
[23]   Performance Analysis of Breast Cancer Classification from Mammogram Images Using Vision Transformer [J].
Borah, Naiwrita ;
Varma, Sai Pratyush P. ;
Datta, Ashis ;
Kumar, Amish ;
Baruah, Udayan ;
Ghosal, Palash .
2022 IEEE CALCUTTA CONFERENCE, CALCON, 2022, :238-243
[24]   Improving SVDD classification performance on hyperspectral images via correlation based ensemble technique [J].
Uslu, Faruk Sukru ;
Binol, Hamidullah ;
Ilarslan, Mustafa ;
Bal, Abdullah .
OPTICS AND LASERS IN ENGINEERING, 2017, 89 :169-177
[25]   Systematical Analysis and Pathological Classification of Breast Cancer from Mammographic Images with Using Specific Machine Learning Methods [J].
Ural, Ali Berkan .
TRAITEMENT DU SIGNAL, 2022, 39 (06) :2149-2156
[26]   BI-RADS CATEGORIES AND BREAST LESIONS CLASSIFICATION OF MAMMOGRAPHIC IMAGES USING ARTIFICIAL INTELLIGENCE DIAGNOSTIC MODELS [J].
Turk, F. ;
Akkur, E. ;
Erogul, O. .
NEURAL NETWORK WORLD, 2023, 33 (06) :413-432
[27]   Improving Tree Species Classification Using UAS Multispectral Images and Texture Measures [J].
Gini, Rossana ;
Sona, Giovanna ;
Ronchetti, Giulia ;
Passoni, Daniele ;
Pinto, Livio .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (08)
[28]   Spectral-Spatial Pixel Characterization Using Gabor Filters for Hyperspectral Image Classification [J].
Rajadell, Olga ;
Garcia-Sevilla, Pedro ;
Pla, Filiberto .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (04) :860-864
[29]   CLASSIFICATION OF PAINT ON METALLIC SURFACES USING SPATIAL DOMAIN ANALYSIS OF LASER IMAGES [J].
SAFIRI, H ;
AHMADI, M ;
NIVI, H .
COMPUTERS & ELECTRICAL ENGINEERING, 1995, 21 (06) :433-439
[30]   Modeling Strategies and Spatial Filters for Improving the Performance of P300-speller within and across Individuals [J].
Wang, Tao ;
Ke, Yufeng ;
Kong, Linghan ;
Liu, Pengxiao ;
Xu, Jinzhao ;
Liu, Wentao ;
An, Xingwei ;
Xu, Mingpeng ;
Ming, Dong .
2019 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (CIVEMSA 2019), 2019, :69-73