Improving Classification Performance of Spatial Filters in Mammographic Microcalcifications Images Using Persistent Homology

被引:0
|
作者
Malek, Aminah Abdul [1 ,2 ]
Alias, Mohd Almie [1 ]
Razak, Fatimah Abdul [1 ]
Norani, Mohd Salmi Md [1 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, Bangi 43600, Selangor, Malaysia
[2] Univ Teknol MARA UiTM, Coll Comp Informat & Math, Negeri Sembilan Branch, Math Sci Studies, Seremban Campus, Seremban 70300, Negeri Sembilan, Malaysia
来源
MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES | 2024年 / 20卷 / 06期
关键词
Spatial filter; breast cancer; classification; mammogram; persistent homology;
D O I
10.11113/mjfas.v20n6.3714
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Noise and artefacts in mammogram images can obscure important indicators of microcalcifications, complicating accurate diagnosis. While traditional spatial filters can reduce noise and are effective to some extent, they often fail to enhance features crucial for classification. This study uses persistent homology (PH) to evaluate and improve the classification performance of various spatial filters on mammogram images. The evaluation process involves converting filtered images into persistence diagrams (PDs) to capture topological features. These diagrams are then vectorised into PH features for classification using a neural network classifier. This study also examines further filtering of PDs from filtered images to enhance classification performance. Using the Digital Database for Screening Mammography (DDSM) and Mammographic Image Analysis Society (MIAS) datasets, we evaluate Median, Wiener, Gaussian, and Bilateral filters alone and integrate them with PH-based filtering. Results show significant classification improvements, with Wiener filters achieving 96.33% accuracy on the DDSM dataset (up from 57.38%) and Gaussian filters reaching 85.33% on the MIAS dataset (up from 73.33%). These findings demonstrate the potential of PH-based filters to enhance diagnostic accuracy in breast cancer detection by refining topological features and effectively reducing noise.
引用
收藏
页码:1288 / 1307
页数:20
相关论文
共 50 条
  • [1] Detection and classification of clusters of microcalcifications on mammographic images
    Pasynkov, D. V.
    Egoshin, I. A.
    Kolchev, A. A.
    Romanycheva, E. A.
    Klyushkin, I. V.
    Pasynkova, O. O.
    BIOMEDICAL ENGINEERING, 2024, 58 (01) : 40 - 44
  • [2] Classification of Hepatic Tumor Images Using Persistent Homology
    Kotoku, J.
    Oyama, A.
    Hiraoka, Y.
    Obayashi, I.
    Shiraishi, K.
    Haga, A.
    Kondo, H.
    Saikawa, Y.
    Kobayashi, T.
    Furui, S.
    MEDICAL PHYSICS, 2018, 45 (06) : E192 - E192
  • [3] The classification of endoscopy images with persistent homology
    Dunaeva, Olga
    Edelsbrunner, Herbert
    Lukyanov, Anton
    Machin, Michael
    Malkova, Daria
    Kuvaev, Roman
    Kashin, Sergey
    PATTERN RECOGNITION LETTERS, 2016, 83 : 13 - 22
  • [4] The Classification of Endoscopy Images with Persistent Homology
    Dunaeva, Olga
    Edelsbrunner, Herbert
    Lukyanov, Anton
    Machin, Michael
    Malkova, Daria
    16TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2014), 2014, : 565 - 570
  • [5] Navigation Style Classification Using Persistent Homology
    Akai, Naoki
    Matsubayashi, Shota
    Miwa, Kazuhisa
    Hirayama, Takatsugu
    Murase, Hiroshi
    2022 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII 2022), 2022, : 161 - 164
  • [6] Improving Breast Cancer Classification Using (Smote) Technique and Pectoral Muscle Removal in Mammographic Images
    Abdulla, Srwa Hasan
    Sagheer, Ali Makki
    Veisi, Hadi
    Mendel, 2021, 27 (02) : 36 - 43
  • [7] Classification for transmission electron microscope images from different amorphous states using persistent homology
    Uesugi, Fumihiko
    Ishii, Masashi
    MICROSCOPY, 2022, 71 (03) : 161 - 168
  • [8] Persistent Homology for the Automatic Classification of Prostate Cancer Aggressiveness in Histopathology Images
    Lawson, Peter
    Schupbach, Jordan
    Fasy, Brittany Terese
    Sheppard, John W.
    MEDICAL IMAGING 2019: DIGITAL PATHOLOGY, 2019, 10956
  • [9] Improving the performance of spatial watermarking of images using channel coding
    Hernández, JR
    Rodríguez, JM
    Pérez-González, F
    SIGNAL PROCESSING, 2000, 80 (07) : 1261 - 1279
  • [10] Acute lymphoblastic leukemia classification using persistent homology
    Shah, Waqar Hussain
    Baloch, Abdullah
    Jaimes-Reategui, Rider
    Iqbal, Sohail
    Fatima, Syeda Rafia
    Pisarchik, Alexander N.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024,