Linear stability analysis of the Couette flow for the two dimensional Euler-Poisson system

被引:0
作者
Pu, Xueke [1 ]
Zhou, Wenli [2 ]
Bian, Dongfen [3 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Guangxi Normal Univ, Sch Math & Stat, Guilin 541006, Peoples R China
[3] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
LIMIT;
D O I
10.1063/5.0238142
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is concerned with the linear stability analysis for the Couette flow of the Euler-Poisson system for both ionic fluid and electronic fluid in the domain TxR. We establish upper and lower bounds of the linearized solutions of the Euler-Poisson system near Couette flow. In particular, inviscid damping for the solenoidal component of the velocity is obtained.
引用
收藏
页数:17
相关论文
共 49 条
[21]  
Holm D. D., 1985, Physics Reports, V123, P1, DOI 10.1016/0370-1573(85)90028-6
[22]   Linear stability of viscous supersonic plane Couette flow [J].
Hu, S ;
Zhong, XL .
PHYSICS OF FLUIDS, 1998, 10 (03) :709-729
[23]   Non-linear inviscid damping near monotonic shear flows [J].
Ionescu, Alexandru D. ;
Jia, Hao .
ACTA MATHEMATICA, 2023, 230 (02) :321-399
[24]   The Euler-Poisson System in 2D: Global Stability of the Constant Equilibrium Solution [J].
Ionescu, Alexandru D. ;
Pausader, Benoit .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (04) :761-826
[25]   Inviscid Damping Near the Couette Flow in a Channel [J].
Ioneseu, Alexandru D. ;
Jia, Hao .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 374 (03) :2015-2096
[26]   Smooth global solutions for the two-dimensional Euler Poisson system [J].
Jang, Juhi ;
Li, Dong ;
Zhang, Xiaoyi .
FORUM MATHEMATICUM, 2014, 26 (03) :645-701
[27]   The two-dimensional Euler-Poisson system with spherical symmetry [J].
Jang, Juhi .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (02)
[28]   LINEAR INVISCID DAMPING NEAR MONOTONE SHEAR FLOWS [J].
Jia, Hao .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (01) :623-652
[29]   Linear Inviscid Damping in Gevrey Spaces [J].
Jia, Hao .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 235 (02) :1327-1355
[30]   Asymptotic Behavior of Solutions to the Compressible Navier-Stokes Equation Around a Parallel Flow [J].
Kagei, Yoshiyuki .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) :585-650