Linear stability analysis of the Couette flow for the two dimensional Euler-Poisson system

被引:0
作者
Pu, Xueke [1 ]
Zhou, Wenli [2 ]
Bian, Dongfen [3 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Guangxi Normal Univ, Sch Math & Stat, Guilin 541006, Peoples R China
[3] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
LIMIT;
D O I
10.1063/5.0238142
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is concerned with the linear stability analysis for the Couette flow of the Euler-Poisson system for both ionic fluid and electronic fluid in the domain TxR. We establish upper and lower bounds of the linearized solutions of the Euler-Poisson system near Couette flow. In particular, inviscid damping for the solenoidal component of the velocity is obtained.
引用
收藏
页数:17
相关论文
共 49 条
[1]  
Antonelli P, 2020, Arxiv, DOI arXiv:2003.01694
[2]   Linear stability analysis of the homogeneous Couette flow in a 2D isentropic compressible fluid [J].
Antonelli, Paolo ;
Dolce, Michele ;
Marcati, Pierangelo .
ANNALS OF PDE, 2021, 7 (02)
[3]   Dynamics Near the Subcritical Transition of the 3D Couette Flow II: Above Threshold Case [J].
Bedrossian, Jacob ;
Germain, Pierre ;
Masmoudi, Nader .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 279 (1377) :I-+
[4]  
Bedrossian J, 2020, MEM AM MATH SOC, V266, P1
[5]   STABILITY OF THE COUETTE FLOW AT HIGH REYNOLDS NUMBERS IN TWO DIMENSIONS AND THREE DIMENSIONS [J].
Bedrossian, Jacob ;
Germain, Pierre ;
Masmoudi, Nader .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 56 (03) :373-414
[6]   The Sobolev Stability Threshold for 2D Shear Flows Near Couette [J].
Bedrossian, Jacob ;
Vicol, Vlad ;
Wang, Fei .
JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (06) :2051-2075
[7]   On the stability threshold for the 3D Couette flow in Sobolev regularity [J].
Bedrossian, Jacob ;
Germain, Pierre ;
Masmoudi, Nader .
ANNALS OF MATHEMATICS, 2017, 185 (02) :541-608
[8]   INVISCID DAMPING AND THE ASYMPTOTIC STABILITY OF PLANAR SHEAR FLOWS IN THE 2D EULER EQUATIONS [J].
Bedrossian, Jacob ;
Masmoudi, Nader .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (122) :195-300
[9]   Stability threshold for 2D shear flows of the Boussinesq system near Couette [J].
Bian, Dongfen ;
Pu, Xueke .
JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (08)
[10]   Transition Threshold for the 2-D Couette Flow in a Finite Channel [J].
Chen, Qi ;
Li, Te ;
Wei, Dongyi ;
Zhang, Zhifei .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 238 (01) :125-183