Ionic Liquid-Based Hydrogel Electrolytes Enabling High-Voltage-Plateau Zinc-Ion Batteries

被引:0
|
作者
Chen, Yuejin [1 ]
Zhu, Mengyu [1 ]
Li, Chunxin [1 ]
Wang, Huibo [1 ,2 ]
Chen, Danling [1 ]
Wu, He [1 ]
Huang, Zhiqiang [1 ]
Wang, Yating [1 ]
Fan, You [1 ]
Bai, Zhengshuai [1 ]
Chen, Shi [3 ]
Tang, Yuxin [1 ,2 ]
Zhang, Yanyan [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Chem Engn, Fuzhou 350116, Peoples R China
[2] Qingyuan Innovat Lab, Quanzhou 362801, Peoples R China
[3] Univ Macau, Inst Appl Phys & Mat Engn, Taipa 999078, Macao, Peoples R China
基金
中国国家自然科学基金;
关键词
anti-freezing; high voltage plateau; hydrogel electrolytes; ionic liquids; zinc-ion batteries;
D O I
10.1002/adfm.202501162
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous zinc ion batteries (ZIBs) have been recognized as highly promising energy storage systems due to their high safety, low cost, and environmental benignity. However, low voltage platform of cathode, coupled with uneven Zn deposition, side reactions, and limited operational temperature range caused by free water molecules, has hampered the practical application of ZIBs. To address these issues, 1-ethyl-3-methylimidazolium acetate (EmimAc) ionic liquid (IL) is utilized to modify the active water in polyvinyl alcohol (PVA)-based hydrogel electrolyte. The abundant hydroxyl groups on PVA chains, along with strong interactions between IL and H2O, disrupt hydrogen bonds between water molecules. This hydrogel electrolyte alleviates side reactions, and improves low-temperature performance through suppressing water crystallization and lowering the freezing point of the electrolyte. Furthermore, the strong binding of hydroxyl groups of PVA to Zn2+ restricts Zn2+ migration, ensuring the de-intercalation of Na+ at the Na3V2(PO4)(3) (NVP) cathode, thereby maintaining a high voltage plateau (1.48 V) for improved energy density. Benefitting from these merits, a pouch cell of Zn||NVP achieves 100 cycles at 25 degrees C, and a coin cell achieves 81.3% capacity retention after 1600 cycles at -20 degrees C. This work represents a significant advance in designing expanded work voltage/temperature hydrogel electrolytes for ZIBs.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] High-Voltage Organic Cathodes for Zinc-Ion Batteries through Electron Cloud and Solvation Structure Regulation
    Cui, Huilin
    Wang, Tairan
    Huang, Zhaodong
    Liang, Guojin
    Chen, Ze
    Chen, Ao
    Wang, Donghong
    Yang, Qi
    Hong, Hu
    Fan, Jun
    Zhi, Chunyi
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (30)
  • [42] Ionic Liquid-Based Electrolyte Membranes for Medium-High Temperature Lithium Polymer Batteries
    Kim, Guk-Tae
    Passerini, Stefano
    Carewska, Maria
    Appetecchi, Giovanni Battista
    MEMBRANES, 2018, 8 (03)
  • [43] In situ surface protection of lithium metal anode in Lithium-Selenium disulfide batteries with ionic liquid-based electrolytes
    Dong, Panpan
    Zhang, Xiahui
    Cha, Younghwan
    Lee, Jung-In
    Song, Min-Kyu
    NANO ENERGY, 2020, 69
  • [44] An easily degradable composite separator with high affinity to ionic-liquid-based electrolytes for safe Li-ion batteries
    Li, Yaqian
    Li, Pingan
    Lan, Xiwei
    Jiang, Yingjun
    Hu, Xianluo
    MATERIALS TODAY PHYSICS, 2023, 38
  • [45] Rapidly Synthesized Single-Ion Conductive Hydrogel Electrolyte for High-Performance Quasi-Solid-State Zinc-ion Batteries
    Qiu, Tianyu
    Wang, Tonghui
    Tang, Wensi
    Li, Yingqi
    Li, Yangguang
    Lang, Xingyou
    Jiang, Qing
    Tan, Huaqiao
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (45)
  • [46] A facile strategy to unlock the high capacity of vanadium-based cathode for aqueous zinc-ion batteries
    Lin Gou
    Wentao Zhao
    Huan Li
    Xingjiang Liu
    Qiang Xu
    Journal of Solid State Electrochemistry, 2024, 28 : 113 - 123
  • [47] A facile strategy to unlock the high capacity of vanadium-based cathode for aqueous zinc-ion batteries
    Gou, Lin
    Zhao, Wentao
    Li, Huan
    Liu, Xingjiang
    Xu, Qiang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (01) : 113 - 123
  • [48] MXene embedded hydrogel electrolyte enables stable zinc metal anodes for high-performance self-healing flexible zinc-ion batteries
    Huang, Fuyao
    Wu, Runhai
    Zhang, Li
    Yang, Shaopei
    Li, Junyi
    Zhou, Sai
    Guo, Yujia
    Du, Pengcheng
    JOURNAL OF POWER SOURCES, 2025, 632
  • [49] Advanced low-flammable pyrrole ionic liquid electrolytes for high safety lithium-ion batteries
    Chen, Zhixiang
    Shen, Hao
    Zhu, Yucheng
    Hua, Min
    Pan, Xuhai
    Liu, Yahong
    Ji, Hao
    Bolliev, Makhmud
    Jiang, Juncheng
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [50] Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes
    Baranchugov, V.
    Markevich, E.
    Pollak, E.
    Salitra, G.
    Aurbach, D.
    ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (04) : 796 - 800