Background: Tibiofemoral contact mechanics (TFCM) is an accepted biomechanical metrics for evaluating the meniscus in its intact, torn, and repaired states. Pressure sensors are increasingly used, with accuracy and repeatability influenced by test conditions, their design, and their properties. To identify factors optimising performance, we performed a systematic review of the literature on their use for measuring TFCM in posterior meniscal root tears. Methods: The Cochrane Controlled Register of Trials, PubMed, and Embase were used to perform a systematic review using the PRISMA criteria. As laboratory and surgical setup can influence sensor performance, we collected data on specimen preparation, repair techniques, hardware use, and biomechanical testing parameters. Results: 24 biomechanical studies were included. Specimen preparations were similar across studies with respect to femoral and tibial mounting. Single axial compressive forces were applied between 100 and 1800 N at varying flexion angles (0-90 degrees). Tekscan (Boston, MA, USA) was the commonest sensor used to measure TFCM, followed by digital capacitive sensors and Fujifilm (Tokyo, Japan). Factors influencing their performance included fluid exposure, lack of adequate fixation, non-specific calibration protocols, load saturation exceeding calibration, damaged sensels and inappropriate pre-test conditioning. Conclusions: Understanding potential factors influencing pressure sensors may improve accuracy, area, and pressure distribution measurements.