A new strategy for accelerating redox kinetics in lithium-ion batteries: Highly porous poly(ethylene glycol)/nanocellulose separators

被引:0
|
作者
Ko, Youngsang [1 ,2 ]
Jung, Han Young [1 ]
Jung, Hyun Wook [1 ]
Ko, Seung Min [1 ]
Lee, Jung Tae [1 ]
You, Jungmok [1 ]
机构
[1] Kyung Hee Univ, Coll Life Sci, Dept Convergent Biotechnol & Adv Mat Sci, 1732 Deogyeong Daero, Yongin 17104, South Korea
[2] Korea Inst Mat Sci KIMS, Composites & Convergence Mat Res Div, 797 Changwon Daero, Chang Won 51508, Gyeongsangnam D, South Korea
基金
新加坡国家研究基金会;
关键词
Cellulose; Separator; Lithium-ion battery; Porogen; Ion transport; MEMBRANE; COMPOSITES; DENSITY;
D O I
10.1016/j.carbpol.2025.123372
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Nanocellulose has garnered attention in energy storage as an environmentally friendly and stable separator for lithium-ion batteries (LIBs). However, cellulose nanofibers (CNF) form a dense network that impedes Li-ion migration and limits electrolyte uptake. To develop an efficient LIB separator, polyethylene glycol (PEG) was incorporated with CNF to promote hydrogen bonding, leading to a stable PEG/CNF composite that enhances ionic conductivity. Additionally, polystyrene (PS) was used as a porogen to create a highly porous structure with uniform pore distribution. The PEG/CNF-based separators exhibited superior electrolyte compatibility, uptake capacity, and thermal stability compared to polypropylene (PP)-based commercial separators. The porous PEG/ CNF separator demonstrated significantly higher ionic conductivity than the PP separator, with values of 2.0672 and 1.3272 mS cm-1, respectively. The cell paired with the PEG/CNF separator, LiFePO4, and Li metal (PEG/CNF cell) exhibited improved mass transfer kinetics under high current density. At a current density of 10C, the PEG/ CNF cell achieved a specific capacity of 108 mAh g-1. After 300 cycles at a current density of 5C, the capacity retention of cells with the PEG/CNF separator was 80 %, compared to only 25 % with the PP separator. These findings highlight the superior Li-ion transport capacity of the porous PEG/CNF separator.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Redox-Active Separators for Lithium-Ion Batteries
    Wang, Zhaohui
    Pan, Ruijun
    Ruan, Changqing
    Edstrom, Kristina
    Stromme, Maria
    Nyholm, Leif
    ADVANCED SCIENCE, 2018, 5 (03):
  • [2] Porous, robust, thermally stable, and flame retardant nanocellulose/polyimide separators for safe lithium-ion batteries
    Liu, Yi
    Li, Chao
    Li, Chunxing
    Xu, Linhe
    Zhou, Shuang
    Zhang, Ze
    Zhang, Junxian
    Soham, Das
    Fan, Rong
    Liu, Hao
    Chen, Gang
    Li, Yuanyuan
    Ling, Tong
    Li, Zhipeng
    Tao, Jinsong
    Wan, Jiayu
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (43) : 23360 - 23369
  • [3] Aluminum oxide and ethylene bis(diphenylphosphine)-incorporated poly(imide) separators for lithium-ion batteries
    Cheon, Jaemun
    Park, Sang Heon
    Kim, Youngkwon
    Yim, Taeeun
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2022, 43 (09) : 1103 - 1110
  • [4] Nanocomposite poly(vynilidene fluoride)/nanocrystalline cellulose porous membranes as separators for lithium-ion batteries
    Bolloli, Marco
    Antonelli, Claire
    Molmeret, Yannick
    Alloin, Fannie
    Iojoiu, Cristina
    Sanchez, Jean-Yves
    ELECTROCHIMICA ACTA, 2016, 214 : 38 - 48
  • [5] In situ covalent crosslinking strategy to construct highly stable composite separators for lithium-ion batteries
    Zhu, Hezhe
    Dong, Bowei
    Cai, Xiaochuan
    Xi, Liujiang
    Zhang, Peisheng
    Hao, Yuanqiang
    Chen, Shu
    Zeng, Rongjin
    CHEMICAL ENGINEERING JOURNAL, 2024, 488
  • [6] Polydopamine-based redox-active separators for lithium-ion batteries
    Pan, Ruijun
    Wang, Zhaohui
    Sun, Rui
    Lindh, Jonas
    Edstrom, Kristina
    Stromme, Maria
    Nyholm, Leif
    JOURNAL OF MATERIOMICS, 2019, 5 (02) : 204 - 213
  • [7] A new design strategy for redox-active molecular assemblies with crystalline porous structures for lithium-ion batteries
    Nakashima, Kensuke
    Shimizu, Takeshi
    Kamakura, Yoshinobu
    Hinokimoto, Akira
    Kitagawa, Yasutaka
    Yoshikawa, Hirofumi
    Tanaka, Daisuke
    CHEMICAL SCIENCE, 2020, 11 (01) : 37 - 43
  • [8] Poly(ethylene oxide)-based electrolytes for lithium-ion batteries
    Xue, Zhigang
    He, Dan
    Xie, Xiaolin
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (38) : 19218 - 19253
  • [9] Mechanical Stability of Porous Multilayer Polymer Films—Separators in Lithium-Ion Batteries
    Maksimov A.V.
    Maksimova O.G.
    Bulletin of the Russian Academy of Sciences: Physics, 2023, 87 (09) : 1401 - 1404
  • [10] Oligo(ethylene glycol)-functionalized disiloxanes as electrolytes for lithium-ion batteries
    Zhang, Zhengcheng
    Dong, Jian
    West, Robert
    Amine, Khalil
    JOURNAL OF POWER SOURCES, 2010, 195 (18) : 6062 - 6068