A residual deep learning network for smartwatch-based user identification using activity patterns in daily living

被引:0
|
作者
Mekruksavanich, Sakorn [1 ]
Jitpattanakul, Anuchit [2 ]
机构
[1] Univ Phayao, Sch Informat & Commun Technol, Dept Comp Engn, 19 Moo 2, Phayao 56000, Thailand
[2] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, 1518 Pracharat 1 Rd, Bangkok 10800, Thailand
关键词
User identification; Smartwatch security; Activity patterns; Deep learning; Residual network; Attention mechanism; CONTINUOUS AUTHENTICATION; NEURAL-NETWORKS; FRAMEWORK; IDENTITY; SENSORS;
D O I
10.1016/j.compeleceng.2024.109883
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
User identification is a critical aspect of smartwatch security, ensuring that only authorized individuals gain access to sensitive information stored on the device. Conventional methods like passwords and biometrics have limitations, such as the risk of forgetting passwords or the potential for biometric data to be compromised. This research proposes a novel approach for user identification on smartwatches by analyzing activity patterns using a hybrid residual neural network called Att-ResBiLSTM. The proposed method leverages unique patterns of user interactions with their smartwatches, including application usage, typing behavior, and motion sensor data, to create an individualized user profile. Employing a deep learning network specifically designed for wearable devices, the system can reliably and promptly identify users by analyzing their activity patterns. The Att-ResBiLSTM architecture comprises three key components: convolutional layers, ResBiLSTM, and an attention layer. The convolutional layers extract spatial features from the pre-processed data. At the same time, the ResBiLSTM component captures long-term dependencies in the time-series data by combining the advantages of bidirectional long short-term memory (BiLSTM) and residual connections. The attention mechanism enhances the final recognition features by selectively prioritizing the most informative elements of the input data. The Att-ResBiLSTM model is trained and evaluated using a diverse dataset of user activity patterns. Experimental results demonstrate that the proposed approach achieves remarkable accuracy in user identification, with an accuracy rate of 98.29% and the highest F1-score of 98.24%. The research also conducts a comparative analysis to assess the efficacy of accelerometer data versus gyroscope data, revealing that combining both sensor modalities improves user identification performance. The proposed methodology provides a reliable and user-friendly alternative to conventional user authentication techniques for smartwatches. This approach leverages activity patterns and a hybrid residual deep learning network to offer a robust and efficient solution for user identification based on smartwatch data, thereby enhancing the overall security of wearable devices.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Residual-Network-Based Deep Learning for Parkinson's Disease Classification using Vocal Datasets
    Ogawa, Mitsuhiro
    Yang, Yiran
    2021 IEEE 3RD GLOBAL CONFERENCE ON LIFE SCIENCES AND TECHNOLOGIES (IEEE LIFETECH 2021), 2021, : 275 - 277
  • [32] Deep learning super-resolution electron microscopy based on deep residual attention network
    Wang, Jia
    Lan, Chuwen
    Wang, Caiyong
    Gao, Zehua
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (04) : 2158 - 2169
  • [33] DEEP LEARNING APPROACH FOR RECOGNIZING ACTIVITY OF DAILY LIVING (ADL) FOR SENIOR CARE: EXPLOITING INTERACTION DEPENDENCY AND TEMPORAL PATTERNS
    Zhu, Hongyi
    Samtani, Sagar
    Brown, Randall A.
    Chen, Hsinchun
    MIS QUARTERLY, 2021, 45 (02) : 859 - 895
  • [34] Tool Wear Monitoring Based on Transfer Learning and Improved Deep Residual Network
    Zhang, Nan
    Zhao, Jiawei
    Ma, Lin
    Kong, Haoqiang
    Li, Huaqiang
    IEEE ACCESS, 2022, 10 : 119546 - 119557
  • [35] Deep Learning Based Residual Network Features for Telugu Printed Character Recognition
    Sonthi, Vijaya Krishna
    Nagarajan, S.
    Krishnaraj, N.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 34 (03) : 1725 - 1736
  • [36] Age and Gender Estimation using Deep Residual Learning Network
    Lee, Seok Hee
    Hosseini, Sepidehsadat
    Kwon, Hyuk Jin
    Moon, Jaewon
    Koo, Hyung Il
    Cho, Nam Ik
    2018 INTERNATIONAL WORKSHOP ON ADVANCED IMAGE TECHNOLOGY (IWAIT), 2018,
  • [37] Activities of Daily Living Recognition With Binary Environment Sensors Using Deep Learning: A Comparative Study
    Wang, Aiguo
    Zhao, Shenghui
    Zheng, Chundi
    Yang, Jing
    Chen, Guilin
    Chang, Chih-Yung
    IEEE SENSORS JOURNAL, 2021, 21 (04) : 5423 - 5433
  • [38] Network anomaly detection using channel boosted and residual learning based deep convolutional neural network
    Chouhan, Naveed
    Khan, Asifullah
    Khan, Haroon-ur-Rasheed
    APPLIED SOFT COMPUTING, 2019, 83
  • [39] A Cybertwin Based Multimodal Network for ECG Patterns Monitoring Using Deep Learning
    Qi, Wen
    Su, Hang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (10) : 6663 - 6670
  • [40] A novel capsule network based on deep routing and residual learning
    Zhang, Jian
    Xu, Qinghai
    Guo, Lili
    Ding, Ling
    Ding, Shifei
    SOFT COMPUTING, 2023, 27 (12) : 7895 - 7906