Chaotic behavior in optomechanical system embedded in non-Markovian environment

被引:0
作者
Xiang, You-Lin [1 ,2 ]
Zhao, Xinyu [1 ,2 ]
Xia, Yan [1 ,2 ]
机构
[1] Fuzhou Univ, Fujian Key Lab Quantum Informat & Quantum Opt, Fuzhou 350108, Peoples R China
[2] Fuzhou Univ, Dept Phys, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
chaos; optomechanical system; non-Markovian environment; RANDOM BIT GENERATION; GROUND-STATE; QUANTUM; CAVITY;
D O I
10.1088/1555-6611/adbad8
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we study the chaotic dynamics of an optomechanical systems coupled to a non-Markovian environment. The master equation of the system is derived beyond the Markovian approximation and the maximum Lyapunov exponent is employed to quantify the generation of chaos. In contrast to the majority of existing studies on chaos generation in optomechanical systems, our work highlights that the influence exerted by the properties of the environment can be of equivalent significance to that of the system parameters, and in certain cases, the environmental parameters may be even more important. The numerical results show that the memory time and central frequency of the environment play crucial roles in the generation of chaos, and they can even determine whether chaos occurs. In addition, we also investigate the influence of system parameters and compare them with the environmental parameters. We hope the results presented in this paper open a new direction for the research on chaos generation and attract more attentions on the influence of the properties of environments.
引用
收藏
页数:9
相关论文
共 87 条
  • [1] Chaos-based communications at high bit rates using commercial fibre-optic links
    Argyris, A
    Syvridis, D
    Larger, L
    Annovazzi-Lodi, V
    Colet, P
    Fischer, I
    García-Ojalvo, J
    Mirasso, CR
    Pesquera, L
    Shore, KA
    [J]. NATURE, 2005, 438 (7066) : 343 - 346
  • [2] Cavity optomechanics
    Aspelmeyer, Markus
    Kippenberg, Tobias J.
    Marquardt, Florian
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (04) : 1391 - 1452
  • [3] Route to Chaos in Optomechanics
    Bakemeier, L.
    Alvermann, A.
    Fehske, H.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (01)
  • [4] Bargmann V., 1971, Reports on Mathematical Physics, V2, P221, DOI 10.1016/0034-4877(71)90006-1
  • [5] Optimized properties of chaos from a laser diode
    Bouchez, Guillaume
    Malica, Tushar
    Wolfersberger, Delphine
    Sciamanna, Marc
    [J]. PHYSICAL REVIEW E, 2021, 103 (04)
  • [6] Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open Systems
    Breuer, Heinz-Peter
    Laine, Elsi-Mari
    Piilo, Jyrki
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (21)
  • [7] Coupled quantized mechanical oscillators
    Brown, K. R.
    Ospelkaus, C.
    Colombe, Y.
    Wilson, A. C.
    Leibfried, D.
    Wineland, D. J.
    [J]. NATURE, 2011, 471 (7337) : 196 - 199
  • [8] Probing quantum chaos in multipartite systems
    Cao, Zan
    Xu, Zhenyu
    del Campo, Adolfo
    [J]. PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [9] Chaotic dynamics on exceptional surfaces
    Chen, Lei
    Wu, Wenhao
    Huang, Feifan
    Chen, Yaofei
    Liu, Gui-Shi
    Luo, Yunhan
    Chen, Zhe
    [J]. PHYSICAL REVIEW A, 2022, 105 (03)
  • [10] Chaos in Optomechanical Systems Coupled to a Non-Markovian Environment
    Chen, Pengju
    Yang, Nan
    Couvertier, Austen
    Ding, Quanzhen
    Chatterjee, Rupak
    Yu, Ting
    [J]. ENTROPY, 2024, 26 (09)