A smaller upper bound for the list injective chromatic number of planar graphs

被引:0
|
作者
Chen, Hongyu [1 ]
Zhang, Li [2 ]
机构
[1] Shanghai Inst Technol, Sch Sci, Shanghai 201418, Peoples R China
[2] Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201209, Peoples R China
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 01期
关键词
list injective coloring; maximum degree; girth; planar graph; GIRTH;
D O I
10.3934/math.2025014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An injective vertex coloring of a graph G is a coloring where no two vertices that share a common neighbor are assigned the same color. If for any list L of permissible colors with size k assigned to the vertices V ( G ) of a graph G , there exists an injective coloring phi in which phi ( v ) E L ( v ) for each vertex v E V ( G ), then G is said to be injectively k-choosable. The notation chi l i ( G ) represents the minimum value of k such that a graph G is injectively k-choosable. In this article, for any maximum degree O , we demonstrate that chi l i ( G ) <= O + 4 if G is a planar graph with girth g >= 5 and without intersecting 5-cycles.
引用
收藏
页码:289 / 310
页数:22
相关论文
共 50 条
  • [1] Two smaller upper bounds of list injective chromatic number
    Bu, Yuehua
    Lu, Kai
    Yang, Sheng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 29 (02) : 373 - 388
  • [2] Two smaller upper bounds of list injective chromatic number
    Yuehua Bu
    Kai Lu
    Sheng Yang
    Journal of Combinatorial Optimization, 2015, 29 : 373 - 388
  • [3] List injective Coloring of Planar Graphs
    Bu, Yuehua
    Wang, Chao
    Yang, Sheng
    ARS COMBINATORIA, 2018, 141 : 191 - 211
  • [4] PRECISE UPPER BOUND FOR THE STRONG EDGE CHROMATIC NUMBER OF SPARSE PLANAR GRAPHS
    Borodin, Oleg V.
    Ivanova, Anna O.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (04) : 759 - 770
  • [5] LIST INJECTIVE COLORING OF PLANAR GRAPHS WITH GIRTH g >= 5
    Bu, Yuehua
    Yang, Sheng
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (01)
  • [6] List injective colorings of planar graphs
    Borodin, O. V.
    Ivanova, A. O.
    DISCRETE MATHEMATICS, 2011, 311 (2-3) : 154 - 165
  • [7] LIST INJECTIVE COLORING OF PLANAR GRAPHS WITH GIRTH AT LEAST FIVE
    Chen, Hongyu
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (01) : 263 - 271
  • [8] List injective coloring of planar graphs with girth g ≥ 6
    Chen, Hong-Yu
    Wu, Jian-Liang
    DISCRETE MATHEMATICS, 2016, 339 (12) : 3043 - 3051
  • [9] Injective Chromatic Number of Outerplanar Graphs
    Mozafari-Nia, Mahsa
    Omoomi, Behnaz
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (06): : 1309 - 1320
  • [10] Improved upper bound for acyclic chromatic number of graphs
    Cai, Jiansheng
    Wang, Jihui
    Yu, Jiguo
    ARS COMBINATORIA, 2019, 142 : 231 - 237