Machine learning-assisted synthetic biology of cyanobacteria and microalgae

被引:0
作者
Jin, Weijia [1 ,2 ]
Wang, Fangzhong [1 ,2 ,3 ]
Chen, Lei [1 ,2 ]
Zhang, Weiwen [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Lab Synthet Microbiol, Tianjin, Peoples R China
[2] Tianjin Univ, Key Lab Syst Bioengn, Minist Educ, Tianjin, Peoples R China
[3] Tianjin Univ, Ctr Biosafety Res & Strategy, Tianjin, Peoples R China
来源
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS | 2025年 / 86卷
基金
中国国家自然科学基金;
关键词
Machine learning; Synthetic biology; cyanobacteria; Microalgae; LIPID PRODUCTION; BIOMASS; GROWTH; RECOMBINATION; OPTIMIZATION; EXTRACTION; PREDICTION; EFFICIENCY;
D O I
10.1016/j.algal.2025.103911
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cyanobacteria and microalgae have recently been utilized as autotrophic chassis for microbial cell factories capable of converting light and COQ directly into high-value products. However, compared to other heterotrophic model chassis, they face many challenges such as limited genetic manipulation tools, poorly understood metabolic regulatory networks, and low production efficiency. Machine learning, a data-driven pattern recognition strategy, leverages statistical associations in datasets for classification and generation, proving to be a valuable tool for synthetic biology. Synthetic biology requires the extraction of fundamental component information from complex biological data to create novel applications through the reassembly of biological components. This process aligns well with the capabilities of machine learning. In this review, we briefly introduce the recent progress on how machine learning has assisted in genome reannotation, contributed to the development of genetic manipulation tools, elucidated metabolic networks, and optimized bioprocesses in cyanobacterial and microalgal studies within the context of synthetic biology. Additionally, we analyze the current challenges facing this field and provide perspectives on further research directions for applying machine learning to synthetic biology in cyanobacteria and microalgae.
引用
收藏
页数:14
相关论文
共 133 条
[1]   Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator [J].
Ajjawi, Imad ;
Verruto, John ;
Aqui, Moena ;
Soriaga, Leah B. ;
Coppersmith, Jennifer ;
Kwok, Kathleen ;
Peach, Luke ;
Orchard, Elizabeth ;
Kalb, Ryan ;
Xu, Weidong ;
Carlson, Tom J. ;
Francis, Kristie ;
Konigsfeld, Katie ;
Bartalis, Judit ;
Schultz, Andrew ;
Lambert, William ;
Schwartz, Ariel S. ;
Brown, Robert ;
Moellering, Eric R. .
NATURE BIOTECHNOLOGY, 2017, 35 (07) :647-+
[2]   Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications-A Review [J].
Ambati, Ranga Rao ;
Phang, Siew Moi ;
Ravi, Sarada ;
Aswathanarayana, Ravishankar Gokare .
MARINE DRUGS, 2014, 12 (01) :128-152
[3]   mSRFR: a machine learning model using microalgal signature features for ncRNA classification [J].
Anuntakarun, Songtham ;
Lertampaiporn, Supatcha ;
Laomettachit, Teeraphan ;
Wattanapornprom, Warin ;
Ruengjitchatchawalya, Marasri .
BIODATA MINING, 2022, 15 (01)
[4]   Transcriptional Engineering of Microalgae: Prospects for High-Value Chemicals [J].
Bajhaiya, Amit K. ;
Moreira, Javiera Ziehe ;
Pittman, Jon K. .
TRENDS IN BIOTECHNOLOGY, 2017, 35 (02) :95-99
[5]   smORFer: a modular algorithm to detect small ORFs in prokaryotes [J].
Bartholomaeus, Alexander ;
Kolte, Baban ;
Mustafayeva, Ayten ;
Goebel, Ingrid ;
Fuchs, Stephan ;
Benndorf, Dirk ;
Engelmann, Susanne ;
Ignatova, Zoya .
NUCLEIC ACIDS RESEARCH, 2021, 49 (15)
[6]   NON-CODING RNAs IN DEVELOPMENT AND DISEASE: BACKGROUND, MECHANISMS, AND THERAPEUTIC APPROACHES [J].
Beermann, Julia ;
Piccoli, Maria-Teresa ;
Viereck, Janika ;
Thum, Thomas .
PHYSIOLOGICAL REVIEWS, 2016, 96 (04) :1297-1325
[7]   An eco-friendly strategy for dairy wastewater remediation with high lipid microalgae-bacterial biomass production [J].
Biswas, Tethi ;
Bhushan, Shashi ;
Prajapati, Sanjeev Kumar ;
Chaudhuri, Shaon Ray .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 286
[8]   MathFeature: feature extraction package for DNA, RNA and protein sequences based on mathematical descriptors [J].
Bonidia, Robson P. ;
Domingues, Douglas S. ;
Sanches, Danilo S. ;
de Carvalho, Andre C. P. L. F. .
BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
[9]   Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris [J].
Cai, Peng ;
Duan, Xingpeng ;
Wu, Xiaoyan ;
Gao, Linhui ;
Ye, Min ;
Zhou, Yongjin J. .
NUCLEIC ACIDS RESEARCH, 2021, 49 (13) :7791-7805
[10]  
Carmona-Hernandez J., 2018, JFNR, V6, P176