Maxwell-Dirac system in cosmology

被引:0
|
作者
Saha, Bijan [1 ,2 ]
机构
[1] Joint Inst Nucl Res, Lab Informat Technol, Dubna 141980, Moscow Region, Russia
[2] Peoples Friendship Univ Russia, RUDN Univ, 6 Miklukho Maklaya St, Moscow, Russia
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2024年 / 39卷 / 29期
关键词
Spinor field; BI cosmology; electromagnetic field; energy-momentum tensor; PROBE WMAP OBSERVATIONS; PERFECT FLUID; SPINOR FIELD; DARK ENERGY; UNIVERSE;
D O I
10.1142/S0217751X24501173
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Within the scope of a Bianchi type-I (BI) cosmological model, we study the interacting system of spinor and electromagnetic fields and its role in the evolution of the Universe. In some earlier studies, it was found that in the case of a pure spinor field, the presence of nontrivial nondiagonal components of energy-momentum tensor (EMT) leads to some severe restrictions both on the space-time geometry and/or spinor field itself, whereas in the case of electromagnetic field with induced nonlinearity, such components impose severe restrictions on metric functions and the components of the vector potential. It is shown that in the case of interacting spinor and electromagnetic fields, the restrictions are not as severe as in the other cases and in this case, a nonlinear and massive spinor field with different components of vector potential can survive in a general Bianchi type-I space-time.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Semiclassical asymptotics for the Maxwell-Dirac system
    Sparber, C
    Markowich, P
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (10) : 4555 - 4572
  • [2] Low regularity solutions of the Maxwell-Dirac system
    D'Ancona, Piero
    Foschi, Damiano
    Selberg, Sigmund
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 1, 2009, 67 : 243 - 252
  • [3] The stationary Maxwell-Dirac equations
    Radford, CJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (20): : 5663 - 5681
  • [4] The stationary Maxwell-Dirac equations
    Radford, C
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 593 - 596
  • [5] An efficient and stable numerical method for the Maxwell-Dirac system
    Bao, WZ
    Li, XG
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 199 (02) : 663 - 687
  • [6] Maxwell-Dirac Isomorphism Revisited: From Foundations of Quantum Mechanics to Geometrodynamics and Cosmology
    Kholodenko, Arkady L.
    UNIVERSE, 2023, 9 (06)
  • [7] EXISTENCE OF GLOBAL-SOLUTIONS FOR THE MAXWELL-DIRAC SYSTEM
    GEORGIEV, V
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (07): : 569 - 572
  • [8] A numerical method with particle conservation for the Maxwell-Dirac system
    Li, Xiang-Gui
    Chan, C. K.
    Hou, Y.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (04) : 1096 - 1108
  • [9] GLOBAL SOLUTION TO THE MAXWELL-DIRAC EQUATIONS
    GEORGIEV, VS
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1989, 42 (06): : 17 - 20
  • [10] Existence and multiplicity of stationary solutions for a class of Maxwell-Dirac system
    Zhang, Jian
    Tang, Xianhua
    Zhang, Wen
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 127 : 298 - 311