Prediction of reduced left ventricular ejection fraction using atrial fibrillation or flutter electrocardiograms: A machine-learning study

被引:1
作者
Kwon, Soonil [1 ]
Chung, Soomin [2 ]
Lee, So-Ryoung [3 ,4 ]
Kim, Kwangsoo [4 ,5 ]
Kim, Junmo [2 ]
Baek, Dahyeon [6 ]
Yang, Hyun-Lim [7 ]
Choi, Eue-Keun [3 ,4 ]
Oh, Seil [3 ,4 ]
机构
[1] SNU, Dept Internal Med, Div Cardiol, SMG,Boramae Med Ctr, Seoul, South Korea
[2] Seoul Natl Univ, Interdisciplinary Program Bioengn, Seoul, South Korea
[3] Seoul Natl Univ Hosp, Dept Internal Med, 101 Daehak Ro, Seoul 03080, South Korea
[4] Seoul Natl Univ, Dept Med, Coll Med, Seoul, South Korea
[5] Seoul Natl Univ Hosp, Inst Convergence Med Innovat Technol, Dept Transdisciplinary Med, 101 Daehak Ro, Seoul 03080, South Korea
[6] POSTECH, Ind & Management Engn, Pohang, South Korea
[7] Seoul Natl Univ Hosp, Off Hosp Informat, Seoul, South Korea
关键词
Atrial fibrillation; atrial flutter; machine learning; ejection fraction; heart failure; HEART; RISK; CLASSIFICATION; STROKE;
D O I
10.1177/20552076241311460
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objective Although the evaluation of left ventricular ejection fraction (LVEF) in patients with atrial fibrillation (AF) or atrial flutter (AFL) is crucial for appropriate medical management, the prediction of reduced LVEF (<50%) with AF/AFL electrocardiograms (ECGs) lacks evidence. This study aimed to investigate deep-learning approaches to predict reduced LVEF (<50%) in patients with AF/AFL ECGs and easily obtainable clinical information. Methods Patients with 12-lead ECGs of AF/AFL and echocardiography were divided into those with LVEF <50% and >= 50%. A convolutional neural networks-based model customized to the study (AFibEFNet) and other deep-learning models were investigated. Electrocardiogram signals, ECG features, and clinical features (demographic information, comorbidities, blood cell counts, and blood test results) were collected for training. A hold-out test dataset was constructed using a different recruitment period. Five-fold cross-validation and calibration plots were used to evaluate performance. Results A total of 15,683 patients were analyzed (mean age, 70.0 +/- 11.7 years; 61.2% men), with 82.2% having LVEF >= 50% and 17.8% having LVEF < 50%. Among the learning models, the AFibEFNet outperformed other models regarding area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), and F1-score. Using ECG signals alone, the AFibEFNet model predicted reduced LVEF with AUROC of 0.798 (95% confidence interval [CI], 0.767-0.829) and AUPRC of 0.508 (95% CI, 0.434-0.564). For the AFibEFNet model, additional training with ECG and clinical features significantly improved AUROC (0.816 vs. 0.798, p = 0.04) and AUPRC (0.547 vs. 0.508, p < 0.001). The AFibEFNet model primarily focused on the R-wave, QRS onset and offset, and T-wave in ECG signals. Conclusions Among the patients with AF/AFL, machine learning may predict reduced LVEF with 12-lead ECGs of AF/AFL.
引用
收藏
页数:14
相关论文
共 30 条
[1]  
Abubaker M., 2022, IEEE Trans Artif Intell, V3, P248
[2]   Reappraising the role of inflammation in heart failure [J].
Adamo, Luigi ;
Rocha-Resende, Cibele ;
Prabhu, Sumanth D. ;
Mann, Douglas L. .
NATURE REVIEWS CARDIOLOGY, 2020, 17 (05) :269-285
[3]   Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea [J].
Adedinsewo, Demilade ;
Carter, Rickey E. ;
Attia, Zachi ;
Johnson, Patrick ;
Kashou, Anthony H. ;
Dugan, Jennifer L. ;
Albus, Michael ;
Sheele, Johnathan M. ;
Bellolio, Fernanda ;
Friedman, Paul A. ;
Lopez-Jimenez, Francisco ;
Noseworthy, Peter A. .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2020, 13 (08) :E008437
[4]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[5]   Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Yao, Xiaoxi ;
Lopez-Jimenez, Francisco ;
Mohan, Tarun L. ;
Pellikka, Patricia A. ;
Carter, Rickey E. ;
Shah, Nilay D. ;
Friedman, Paul A. ;
Noseworthy, Peter A. .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2019, 30 (05) :668-674
[6]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[7]   Cardiovascular Research Using the Korean National Health Information Database [J].
Choi, Eue-Keun .
KOREAN CIRCULATION JOURNAL, 2020, 50 (09) :754-772
[8]   Managing Atrial Fibrillation in Patients With Heart Failure and Reduced Ejection Fraction: A Scientific Statement From the American Heart Association [J].
Gopinathannair, Rakesh ;
Chen, Lin Y. ;
Chung, Mina K. ;
Cornwell, William K. ;
Furie, Karen L. ;
Lakkireddy, Dhanunjaya R. ;
Marrouche, Nassir F. ;
Natale, Andrea ;
Olshansky, Brian ;
Joglar, Jose A. .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2021, 14 (07) :688-705
[9]  
Hamatani Y, 2022, JACC-ASIA, V2, P706, DOI [10.1016/j.jacasi.2022.07.007, 10.1016/j.jacasi.2022.07.007]
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778