Differential subordination and superordination results for p-valent analytic functions associated with (r,k)-Srivastava fractional integral calculus

被引:0
|
作者
Tayyah, Adel Salim [1 ]
Atshan, Waggas Galib [1 ]
机构
[1] Univ Al Qadisiyah, Coll Sci, Dept Math, Diwaniyah 58002, Iraq
关键词
Analytic function; P-valent function; Fractional calculus; Srivastava fractional integral operator; (r; k)-gamma function; Hypergeometric function; Subordination; Superordination; Hadamard product; Vortex motion; SANDWICH THEOREMS; DERIVATIVE OPERATOR; MULTIVALENT-FUNCTIONS; UNIVALENT-FUNCTIONS;
D O I
10.1016/j.mex.2024.103079
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The object of the present paper is to investigate generalizations of the hypergeometric function and Srivastava fractional integral calculus by using a general version of gamma function(namely (r,k)-gamma function). Some fundamental results for these new concepts are provided. We introduced differential subordination and superordination results associated with the defined new fractional integral operator. Also, we establish sandwich results for p-valent analytic functions involving this operator. Finally, an application to fluid mechanics is discussed.
引用
收藏
页数:17
相关论文
共 50 条