DIMENSIONS OF FURSTENBERG SETS AND AN EXTENSION OF BOURGAIN'S PROJECTION THEOREM

被引:0
作者
Shmerkin, Pablo [1 ]
Wang, Hong [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
[2] NYU, Courant Inst Math Sci, New York, NY USA
基金
加拿大自然科学与工程研究理事会;
关键词
Furstenberg sets; Bourgain's projection theorem; projections; incidences; Hausdorff dimension; sum-product; discretized sets;
D O I
10.2140/apde.2025.18.265
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the Hausdorff dimension of (s, t)-Furstenberg sets is at least s + (1)(2)t + epsilon, where epsilon > 0 depends only on s and t. This improves the previously best known bound for 2s < t <= 1 + epsilon (s, t), in particular providing the first improvement since 1999 to the dimension of classical s-Furstenberg sets for s < (1)(2). We deduce this from a corresponding discretized incidence bound under minimal nonconcentration assumptions that simultaneously extends Bourgain's discretized projection and sum-product theorems. The proofs are based on a recent discretized incidence bound of T. Orponen and the first author and a certain duality between (s, t) and ((1)(2)t, s + (1)(2)t)-Furstenberg sets.
引用
收藏
页码:265 / 278
页数:17
相关论文
共 18 条
[1]   On the Erdos-Volkmann and Katz-Tao ring conjectures [J].
Bourgain, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (02) :334-365
[2]   On the spectral gap for finitely-generated subgroups of SU(2) [J].
Bourgain, Jean ;
Gamburd, Alex .
INVENTIONES MATHEMATICAE, 2008, 171 (01) :83-121
[3]   The discretized sum-product and projection theorems [J].
Bourgain, Jean .
JOURNAL D ANALYSE MATHEMATIQUE, 2010, 112 :193-236
[4]   Integrability of orthogonal projections, and applications to Furstenberg sets [J].
Dabrowski, Damian ;
Orponen, Tuomas ;
Villa, Michele .
ADVANCES IN MATHEMATICS, 2022, 407
[5]  
Di Benedetto D, 2022, Arxiv, DOI arXiv:2112.08249
[6]  
Elekes G, 1997, ACTA ARITH, V81, P365
[7]   On restricted families of projections in R3 [J].
Fassler, Katrin ;
Orponen, Tuomas .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 109 :353-381
[8]   Incidence estimates for α-dimensional tubes and β-dimensional balls in R2 [J].
Fu, Yuqiu ;
Ren, Kevin .
JOURNAL OF FRACTAL GEOMETRY, 2024, 11 (1-2) :1-30
[9]   An improved bound for the dimension of (α, 2α)-Furstenberg sets [J].
Hera, Kornelia ;
Shmerkin, Pablo ;
Yavicoli, Alexia .
REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (01) :295-322
[10]  
Katz N.H., 2001, NEW YORK J MATH, V7, P149