Existence, stability, and controllability of impulsive coupled Langevin tU-Hilfer fractional problem

被引:0
作者
Khan, Haroon Niaz Ali [1 ,2 ]
Zada, Akbar [1 ]
Kallekh, Afef [3 ]
Popa, Ioan-Lucian [4 ,5 ]
Zhang, Jiqiang [6 ]
机构
[1] Univ Peshawar, Dept Math, Peshawar 25000, Pakistan
[2] CECOS Univ IT & Emerging Sci, Dept Basic Sci & Humanities, Peshawar, Khyber Pakhtunk, Pakistan
[3] King Khalid Univ, Fac Sci, Dept Math, Abha 61413, Saudi Arabia
[4] 1 Decembrie 1918 Univ Alba Iulia, Dept Comp Math & Elect, Alba Iulia 510009, Romania
[5] Transilvania Univ Brasov, Fac Math & Comp Sci, Iuliu Maniu St 50, Brasov 500091, Romania
[6] Anhui Sanlian Univ, Engn Dept, Hefei, Peoples R China
来源
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS | 2025年 / 38卷 / 02期
关键词
Coupled system; controllability; existence; Langevin equation; instantaneous impulsive conditions; stability; Psi-Hilfer derivative; NONLINEAR DIFFERENTIAL-EQUATIONS;
D O I
10.22436/jmcs.038.02.01
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates a coupled Langevin tU-Hilfer fractional problem in a Banach space with instantaneous impulsive conditions. By using the theory of fixed point theorems, we are able to obtain the uniqueness and existence results. We also talk about Ulam-Hyers stability and controllability in a similar way. In order to demonstrate the veracity of the acquired results, we also provide an example.
引用
收藏
页码:125 / 159
页数:35
相关论文
共 34 条
  • [1] A Caputo fractional derivative of a function with respect to another function
    Almeida, Ricardo
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 : 460 - 481
  • [2] Controllability of coupled systems for impulsive φ-Hilfer fractional integro-differential inclusions
    Boudjerida, A.
    Seba, D.
    N'Guerekata, G. M.
    [J]. APPLICABLE ANALYSIS, 2022, 101 (02) : 383 - 400
  • [3] Carvalho A., 2017, INT J DYNAM CONTROL, V5, P168, DOI [10.1007/s40435-016-0224-3, DOI 10.1007/S40435-016-0224-3]
  • [4] Uniform-in-time boundedness in a class of local and nonlocal nonlinear attraction-repulsion chemotaxis models with logistics
    Columbu, Alessandro
    Fuentes, Rafael Diaz
    Frassu, Silvia
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 79
  • [5] Debnath L., 2004, Int J Math Educ Sci Technol, V35, P487, DOI [10.1080/00207390410001686571, DOI 10.1080/00207390410001686571]
  • [6] Optimal Control of a Fractional-Order HIV-Immune System With Memory
    Ding, Yongsheng
    Wang, Zidong
    Ye, Haiping
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2012, 20 (03) : 763 - 769
  • [7] LMI-based stabilization of a class of fractional-order chaotic systems
    Faieghi, Mohammadreza
    Kuntanapreeda, Suwat
    Delavari, Hadi
    Baleanu, Dumitru
    [J]. NONLINEAR DYNAMICS, 2013, 72 (1-2) : 301 - 309
  • [8] Hilfer R., 2000, Applications of fractional calculus in physics, pviii
  • [9] Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system
    Javidi, Mohammad
    Ahmad, Bashir
    [J]. ECOLOGICAL MODELLING, 2015, 318 : 8 - 18
  • [10] Existence and stability of a q-Caputo fractional jerk differential equation having anti-periodic boundary conditions
    Khalid, Khansa Hina
    Zada, Akbar
    Popa, Ioan-Lucian
    Samei, Mohammad Esmael
    [J]. BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)