Freeform thin-film lithium niobate mode converter for photon-pair generation

被引:1
作者
Kim, Changhyun [3 ]
Bae, Munseong [5 ]
Choi, Minho [2 ,3 ]
Lee, Sangbin [2 ]
Lee, Myunghoo [6 ]
Kim, Chihyeon [5 ,7 ]
Jung, Hojoong [3 ]
Chung, Haejun [1 ,2 ]
Kwon, Hyounghan [3 ,4 ]
机构
[1] Hanyang Univ, Dept Elect Engn, Dept Artificial Intelligence, Seoul 04763, South Korea
[2] Hanyang Univ, Dept Artificial Intelligence Semicond Engn, Seoul 04763, South Korea
[3] Korea Inst Sci & Technol KIST, Ctr Quantum Technol, Seoul 02792, South Korea
[4] Korea Univ Sci & Technol, KIST Sch, Div Quantum Informat, Seoul 02792, South Korea
[5] Hanyang Univ, Dept Elect Engn, Seoul 04763, South Korea
[6] Univ Washington, Dept Elect & Comp Engn, Seattle, WA 98195 USA
[7] Korea Res Inst Stand & Sci KRISS, Quantum Technol Inst, Daejeon 34113, South Korea
基金
新加坡国家研究基金会;
关键词
lithium niobate; mode converter; inverse design; topology optimization; spontaneous parametric down conversion; INVERSE DESIGN;
D O I
10.1515/nanoph-2024-0515
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thin-film lithium niobate (TFLN) has emerged as a promising platform for integrated photonics due to its exceptional material properties. The application of freeform topology optimization to TFLN devices enables the realization of compact designs with complex functionalities and high efficiency. However, the stringent fabrication constraints of TFLN present significant challenges for optimization, particularly in nonlinear photonic devices. In this work, we propose an inverse design methodology that successfully addresses these challenges and demonstrates the development of an efficient freeform TFLN mode converter. The numerically optimized mode converter achieves a transmission efficiency of 67.60 % and a mode purity of 84.58 %. Experimental validation through nonlinear processes, including second harmonic generation and spontaneous parametric down-conversion, shows that the fabricated devices improve the efficiency of these processes by factors of two and three, respectively, compared to devices without freeform designs. The proposed inverse design framework provides a powerful tool for advancing the development of TFLN-based devices, with broad applicability to nonlinear and quantum photonics.
引用
收藏
页码:1949 / 1960
页数:12
相关论文
共 59 条
[1]   Photonic Inverse Design of On-Chip Microresonators [J].
Ahn, Geun Ho ;
Yang, Ki Youl ;
Trivedi, Rahul ;
White, Alexander D. ;
Su, Logan ;
Skarda, Jinhie ;
Vuckovic, Jelena .
ACS PHOTONICS, 2022, 9 (06) :1875-1881
[2]   Inverse design and optical vortex manipulation for thin-film absorption enhancement [J].
Bae, Munseong ;
Jo, Jaegang ;
Lee, Myunghoo ;
Kang, Joonho ;
Boriskina, Svetlana V. ;
Chung, Haejun .
NANOPHOTONICS, 2023, 12 (22) :4239-4254
[3]   Very-large-scale integrated quantum graph photonics [J].
Bao, Jueming ;
Fu, Zhaorong ;
Pramanik, Tanumoy ;
Mao, Jun ;
Chi, Yulin ;
Cao, Yingkang ;
Zhai, Chonghao ;
Mao, Yifei ;
Dai, Tianxiang ;
Chen, Xiaojiong ;
Jia, Xinyu ;
Zhao, Leshi ;
Zheng, Yun ;
Tang, Bo ;
Li, Zhihua ;
Luo, Jun ;
Wang, Wenwu ;
Yang, Yan ;
Peng, Yingying ;
Liu, Dajian ;
Dai, Daoxin ;
He, Qiongyi ;
Muthali, Alif Laila ;
Oxenlowe, Leif K. ;
Vigliar, Caterina ;
Paesani, Stefano ;
Hou, Huili ;
Santagati, Raffaele ;
Silverstone, Joshua W. ;
Laing, Anthony ;
Thompson, Mark G. ;
O'Brien, Jeremy L. ;
Ding, Yunhong ;
Gong, Qihuang ;
Wang, Jianwei .
NATURE PHOTONICS, 2023, 17 (07) :573-+
[4]  
Bendsoe MP., 2004, Topology optimization: theory, methods, and applications
[5]  
Bi T., 2024, CLEO SCI INNOVATIONS, pSTu3Q
[6]   Lithium niobate photonics: Unlocking the electromagnetic spectrum [J].
Boes, Andreas ;
Chang, Lin ;
Langrock, Carsten ;
Yu, Mengjie ;
Zhang, Mian ;
Lin, Qiang ;
Fejer, Martin ;
Bowers, John ;
Mitchell, Arnan .
SCIENCE, 2023, 379 (6627)
[7]   Simultaneous type-I and type-II phase matching for second-order nonlinearity in integrated lithium niobate waveguide [J].
Briggs, Ian ;
Hou, Songyan ;
Cui, Chaohan ;
Fan, Linran .
OPTICS EXPRESS, 2021, 29 (16) :26183-26190
[8]   Quantum logical controlled-NOT gate in a lithium niobate-on-insulator photonic quantum walk [J].
Chapman, Robert J. ;
Hausler, Samuel ;
Finco, Giovanni ;
Kaufmann, Fabian ;
Grange, Rachel .
QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (01)
[9]   Validation and characterization of algorithms and software for photonics inverse design [J].
Chen, Mo ;
Christiansen, Rasmus E. ;
Fan, Jonathan A. ;
Isiklar, Goktug ;
Jiang, Jiaqi ;
Johnson, Steven G. ;
Ma, Wenchao ;
Miller, Owen D. ;
Oskooi, Ardavan ;
Schubert, Martin F. ;
Wang, Fengwen ;
Williamson, Ian A. D. ;
Xue, Wenjin ;
Zhou, You .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2024, 41 (02) :A161-A176
[10]   Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides [J].
Chen, Pao-Kang ;
Briggs, Ian ;
Cui, Chaohan ;
Zhang, Liang ;
Shah, Manav ;
Fan, Linran .
NATURE NANOTECHNOLOGY, 2024, 19 (01) :44-+