Safety-Critical Optimal Control of Discrete-Time Non-Linear Systems via Policy Iteration-Based Q-Learning

被引:0
作者
Long, Lijun [1 ,2 ]
Liu, Xiaomei [1 ,2 ]
Huang, Xiaomin [1 ,2 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Peoples R China
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang, Peoples R China
关键词
control barrier functions; discrete-time systems; neural networks; Q-learning; safety-critical control;
D O I
10.1002/rnc.7809
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the problem of safety-critical optimal control for discrete-time non-linear systems. A safety-critical control algorithm is developed based on Q-learning and an iterative adaptive dynamic programming, that is, policy iteration. Discrete-time control barrier functions (CBFs) are introduced into the utility function for guaranteeing safety, in which a novel definition of the safe set and its boundary with multiple discrete-time CBFs are given. Also, for discrete-time systems, by using multiple discrete-time CBFs, the safety-critical optimal control problem of multiple safety objectives is addressed. Meanwhile, safety, convergence, and stability of the developed algorithm are rigorously demonstrated. An effective method to obtain an initial safety-admissible control law is established. Also, the developed algorithm is implemented by building an actor-critic structure with neural networks. Finally, the effectiveness of the proposed algorithm is illustrated by three simulation examples.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Model-Free Q-Learning for the Tracking Problem of Linear Discrete-Time Systems
    Li, Chun
    Ding, Jinliang
    Lewis, Frank L.
    Chai, Tianyou
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 3191 - 3201
  • [32] Output Feedback Q-Learning Control for the Discrete-Time Linear Quadratic Regulator Problem
    Rizvi, Syed Ali Asad
    Lin, Zongli
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (05) : 1523 - 1536
  • [33] Reinforcement Q-learning and Optimal Tracking Control of Unknown Discrete-time Multi-player Systems Based on Game Theory
    Zhao, Jin-Gang
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2024, 22 (05) : 1751 - 1759
  • [34] Comparisons of Continuous-time and Discrete-time Q-learning Schemes for Adaptive Linear Quadratic Control
    Chun, Tae Yoon
    Lee, Jae Young
    Park, Jin Bae
    Choi, Yoon Ho
    2012 PROCEEDINGS OF SICE ANNUAL CONFERENCE (SICE), 2012, : 1228 - 1233
  • [35] Output Feedback Reinforcement Q-Learning Control for the Discrete-Time Linear Quadratic Regulator Problem
    Rizvi, Syed Ali Asad
    Lin, Zongli
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [36] Robust H8 tracking of linear discrete-time systems using Q-learning
    Valadbeigi, Amir Parviz
    Shu, Zhan
    Khaki Sedigh, Ali
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (10) : 5604 - 5623
  • [37] Discrete-Time Multi-Player Games Based on Off-Policy Q-Learning
    Li, Jinna
    Xiao, Zhenfei
    Li, Ping
    IEEE ACCESS, 2019, 7 : 134647 - 134659
  • [38] Dynamic event-triggered control for discrete-time nonlinear Markov jump systems using policy iteration-based adaptive dynamic programming
    Tang, Fanghua
    Wang, Huanqing
    Chang, Xiao-Heng
    Zhang, Liang
    Alharbi, Khalid H.
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2023, 49
  • [39] Data-Driven Safe Control of Discrete-Time Non-Linear Systems
    Zheng, Jian
    Miller, Jared
    Sznaier, Mario
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1553 - 1558
  • [40] Modified λ-Policy Iteration Based Adaptive Dynamic Programming for Unknown Discrete-Time Linear Systems
    Jiang, Huaiyuan
    Zhou, Bin
    Duan, Guang-Ren
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 3291 - 3301