Reinforcement learning-based architecture search for quantum machine learning

被引:1
|
作者
Rapp, Frederic [1 ,2 ]
Kreplin, David A. [1 ]
Huber, Marco F. [1 ,2 ]
Roth, Marco [1 ]
机构
[1] Fraunhofer Inst Mfg Engn & Automat IPA, Nobelstr 12, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Inst Ind Mfg & Management IFF, Allmandring 35, D-70569 Stuttgart, Germany
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2025年 / 6卷 / 01期
关键词
quantum computing; quantum machine learning; reinforcement learning; architecture search;
D O I
10.1088/2632-2153/adaf75
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum machine learning (QML) models use encoding circuits to map data into a quantum Hilbert space. While it is well known that the architecture of these circuits significantly influences core properties of the resulting model, they are often chosen heuristically. In this work, we present a approach using reinforcement learning techniques to generate problem-specific encoding circuits to improve the performance of QML models. By specifically using a model-based reinforcement learning algorithm, we reduce the number of necessary circuit evaluations during the search, providing a sample-efficient framework. In contrast to previous search algorithms, our method uses a layered circuit structure that significantly reduces the search space. Additionally, our approach can account for multiple objectives such as solution quality and circuit depth. We benchmark our tailored circuits against various reference models, including models with problem-agnostic circuits and classical models. Our results highlight the effectiveness of problem-specific encoding circuits in enhancing QML model performance.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Reinforcement Learning-Based Adaptive Operator Selection
    Durgut, Rafet
    Aydin, Mehmet Emin
    OPTIMIZATION AND LEARNING, OLA 2021, 2021, 1443 : 29 - 41
  • [42] Active learning-based hyperspectral image classification: a reinforcement learning approach
    Patel, Usha
    Patel, Vibha
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (02) : 2461 - 2486
  • [43] Quantum reinforcement learning via policy iteration
    Cherrat, El Amine
    Kerenidis, Iordanis
    Prakash, Anupam
    QUANTUM MACHINE INTELLIGENCE, 2023, 5 (02)
  • [44] Active learning-based hyperspectral image classification: a reinforcement learning approach
    Usha Patel
    Vibha Patel
    The Journal of Supercomputing, 2024, 80 : 2461 - 2486
  • [45] Lung Cancer Classification using Reinforcement Learning-based Ensemble Learning
    Luo, Shengping
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (08) : 1112 - 1122
  • [46] Online Reinforcement Learning-Based Strategy Learning in Iterated Prisoners Dilemma
    Xing, Xiaoyu
    Xia, Haoxiang
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2025,
  • [47] Error-Related Potentials in Reinforcement Learning-Based Brain-Machine Interfaces
    Fidencio, Aline Xavier
    Klaes, Christian
    Iossifidis, Ioannis
    FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 16
  • [48] An architecture for behavior-based reinforcement learning
    Konidaris, GD
    Hayes, GM
    ADAPTIVE BEHAVIOR, 2005, 13 (01) : 5 - 32
  • [49] Quantum Finance and Fuzzy Reinforcement Learning-Based Multi-agent Trading System
    Cheng, Chi
    Chen, Bingshen
    Xiao, Ziting
    Lee, Raymond S. T.
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2024, 26 (07) : 2224 - 2245
  • [50] On Explainability of Reinforcement Learning-Based Machine Learning Agents Trained with Proximal Policy Optimization That Utilizes Visual Sensor Data
    Hachaj, Tomasz
    Piekarczyk, Marcin
    APPLIED SCIENCES-BASEL, 2025, 15 (02):