Brain tumor classification using deep convolutional neural networks

被引:0
|
作者
Nurtay, M. [1 ]
Kissina, M. [1 ]
Tau, A. [1 ]
Akhmetov, A. [1 ]
Alina, G. [1 ]
Mutovina, N. [1 ]
机构
[1] Abylkas Saginov Karagandy Tech Univ, 56 N Nazarbayev Ave, Karagandy 100000, Kazakhstan
关键词
brain tumor; computer vision; pattern recognition; machine learning; deep learning; convolutional neural network; transfer learning;
D O I
10.18287/2412-6179-CO-1476
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This study presents a comparative analysis of various convolutional neural network (CNN) models for brain tumor detection on MRI medical images. The primary aim was to assess the effectiveness of different CNN architectures in accurately identifying brain tumors. Multiple models were trained, including a custom-designed CNN with its specific layer architecture, and models based on Transfer Learning utilizing pre-trained neural networks: ResNet-50, VGG-16, and Xception. Performance evaluation of each model in terms of accuracy metrics such as precision, recall, F1-score, and confusion matrix on a test dataset was carried out. The dataset used in this study was obtained from the openly accessible Kaggle competition "Brain Tumor Detection from MRI." This dataset consisted of four classes: glioma, meningioma, no tumor (healthy), and pituitary, ensuring a balanced representation. Testing four models revealed that the custom CNN architecture, utilizing separable convolutions and batch normalization, achieved an average ROC AUC score of 0.99, outperforming the other models. Moreover, this model demonstrated an accuracy of 0.94, indicating its robust performance in brain tumor classification on MRI images.
引用
收藏
页码:253 / 262
页数:10
相关论文
共 50 条
  • [21] Brain tumor classification using deep convolutional autoencoder-based neural network: multi-task approach
    Bashir-Gonbadi, Fatemh
    Khotanlou, Hassan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (13) : 19909 - 19929
  • [22] Brain tumor classification using deep convolutional autoencoder-based neural network: multi-task approach
    Fatemh Bashir-Gonbadi
    Hassan Khotanlou
    Multimedia Tools and Applications, 2021, 80 : 19909 - 19929
  • [23] Multi-classification of brain tumor by using deep convolutional neural network model in magnetic resonance imaging images
    Singh, Ngangbam Herojit
    Merlin, N. R. Gladiss
    Prabu, R. Thandaiah
    Gupta, Deepak
    Alharbi, Meshal
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (01)
  • [24] Classification of Brain MRI with Big Data and deep 3D Convolutional Neural Networks
    Wegmayr, Viktor
    Aitharaju, Sai
    Buhmann, Joachim
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [25] Plankton Classification with Deep Convolutional Neural Networks
    Ouyang Py
    Hu Hong
    Shi Zhongzhi
    2016 IEEE INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2016, : 132 - 136
  • [26] Malware Classification using Deep Convolutional Neural Networks
    Kornish, David
    Geary, Justin
    Sansing, Victor
    Ezekiel, Soundararajan
    Pearlstein, Larry
    Njilla, Laurent
    2018 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2018,
  • [27] Classification of Tumor in Brain MR Images Using Deep Convolutional Neural Network and Global Average Pooling
    Malla, Prince Priya
    Sahu, Sudhakar
    Alutaibi, Ahmed I.
    PROCESSES, 2023, 11 (03)
  • [28] Classification of racehorse limb radiographs using deep convolutional neural networks
    Costa da Silva, Raniere Gaia
    Mishra, Ambika Prasad
    Riggs, Christopher Michael
    Doube, Michael
    VETERINARY RECORD OPEN, 2023, 10 (01)
  • [29] Race Classification from Face using Deep Convolutional Neural Networks
    Wu, Xulei
    Yuan, Peijiang
    Wang, Tianmiao
    Gao, Doudou
    Cai, Ying
    2018 3RD IEEE INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (IEEE ICARM), 2018, : 1 - 6
  • [30] Automatic Fish Species Classification Using Deep Convolutional Neural Networks
    Muhammad Ather Iqbal
    Zhijie Wang
    Zain Anwar Ali
    Shazia Riaz
    Wireless Personal Communications, 2021, 116 : 1043 - 1053