Brain tumor classification using deep convolutional neural networks

被引:0
|
作者
Nurtay, M. [1 ]
Kissina, M. [1 ]
Tau, A. [1 ]
Akhmetov, A. [1 ]
Alina, G. [1 ]
Mutovina, N. [1 ]
机构
[1] Abylkas Saginov Karagandy Tech Univ, 56 N Nazarbayev Ave, Karagandy 100000, Kazakhstan
关键词
brain tumor; computer vision; pattern recognition; machine learning; deep learning; convolutional neural network; transfer learning;
D O I
10.18287/2412-6179-CO-1476
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This study presents a comparative analysis of various convolutional neural network (CNN) models for brain tumor detection on MRI medical images. The primary aim was to assess the effectiveness of different CNN architectures in accurately identifying brain tumors. Multiple models were trained, including a custom-designed CNN with its specific layer architecture, and models based on Transfer Learning utilizing pre-trained neural networks: ResNet-50, VGG-16, and Xception. Performance evaluation of each model in terms of accuracy metrics such as precision, recall, F1-score, and confusion matrix on a test dataset was carried out. The dataset used in this study was obtained from the openly accessible Kaggle competition "Brain Tumor Detection from MRI." This dataset consisted of four classes: glioma, meningioma, no tumor (healthy), and pituitary, ensuring a balanced representation. Testing four models revealed that the custom CNN architecture, utilizing separable convolutions and batch normalization, achieved an average ROC AUC score of 0.99, outperforming the other models. Moreover, this model demonstrated an accuracy of 0.94, indicating its robust performance in brain tumor classification on MRI images.
引用
收藏
页码:253 / 262
页数:10
相关论文
共 50 条
  • [1] Brain Tumor Classification Using Pretrained Convolutional Neural Networks
    Daniel, Mihalas Constantin
    Ruxandra, Lascu Mihaela
    2021 16TH INTERNATIONAL CONFERENCE ON ENGINEERING OF MODERN ELECTRIC SYSTEMS (EMES), 2021, : 130 - 133
  • [2] Study on Brain Tumor Classification Through MRI Images Using a Deep Convolutional Neural Network
    Sharma, Kirti
    Khanna, Ketna
    Gambhir, Sapna
    Gambhir, Mohit
    INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2022, 12 (01)
  • [4] Celiac Disease Deep Learning Image Classification Using Convolutional Neural Networks
    Carreras, Joaquim
    JOURNAL OF IMAGING, 2024, 10 (08)
  • [5] High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks
    Rajkomar, Alvin
    Lingam, Sneha
    Taylor, Andrew G.
    Blum, Michael
    Mongan, John
    JOURNAL OF DIGITAL IMAGING, 2017, 30 (01) : 95 - 101
  • [6] High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks
    Alvin Rajkomar
    Sneha Lingam
    Andrew G. Taylor
    Michael Blum
    John Mongan
    Journal of Digital Imaging, 2017, 30 : 95 - 101
  • [7] Brain Tumor Classification of MRI Images Using Deep Convolutional Neural Network
    Kuraparthi, Swaraja
    Reddy, Madhavi K.
    Sujatha, C. N.
    Valiveti, Himabindu
    Duggineni, Chaitanya
    Kollati, Meenakshi
    Kora, Padmavathi
    Sravan, V
    TRAITEMENT DU SIGNAL, 2021, 38 (04) : 1171 - 1179
  • [8] Brain Tumor Classification Using MRI Images and Convolutional Neural Networks
    Hafeez, Muhammad Adeel
    Kayasandik, Cihan Bilge
    Dogan, Merve Yusra
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [9] Brain tumor classification in MRI image using convolutional neural network
    Khan, Hassan Ali
    Jue, Wu
    Mushtaq, Muhammad
    Mushtaq, Muhammad Umer
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (05) : 6203 - 6216
  • [10] VEHICLE ACCIDENT AND TRAFFIC CLASSIFICATION USING DEEP CONVOLUTIONAL NEURAL NETWORKS
    Kumeda, Bulbula
    Zhang Fengli
    Oluwasanmi, Ariyo
    Owusu, Forster
    Assefa, Maregu
    Amenu, Temesgen
    2019 16TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICWAMTIP), 2019, : 323 - 328