Integrated metabolomic and transcriptomic analyses reveal anthocyanin biosynthesis mechanisms and the regulatory role of LjAN2 in Lonicera japonica

被引:0
|
作者
Tan, Zhengwei [1 ,2 ]
Lu, Dandan [1 ,2 ]
Li, Lei [1 ,2 ]
Yu, Yongliang [1 ,2 ]
Su, Xiaoyu [1 ,2 ]
Sun, Yao [1 ,2 ]
Cao, Yiwen [1 ,2 ]
Li, Chunming [1 ,2 ]
Dong, Wei [1 ,2 ]
Yang, Hongqi [1 ,2 ]
Yang, Qing [1 ,2 ]
An, Sufang [1 ,2 ]
Liang, Huizhen [1 ,2 ]
机构
[1] Henan Acad Agr Sci, Inst Chinese Herbal Med, Zhengzhou 450002, Peoples R China
[2] Henan Acad Agr Sci, Inst Chinese Herbal Med, Prov Key Lab Conservat & Utilizat Tradit Chinese M, Zhengzhou 450002, Henan, Peoples R China
关键词
Lonicera japonica; Flower pigmentation; Anthocyanins composition; Anthocyanin synthase; Transcription factors; MYB; FLOWER COLOR; TRANSPORT; GENES; IDENTIFICATION; ACCUMULATION; EXPRESSION; TEPALS; AN2;
D O I
10.1016/j.plaphy.2025.109824
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Lonicera japonica flowers are a very commonly used traditional Chinese herb. Anthocyanins are the source of flower pigments, and also are renowned for their therapeutic activities. However, the specific anthocyanin composition and regulatory mechanisms governing their accumulation in L. japonica varieties remain unclear. Here, we first investigated the changes in flower color and anthocyanin content during development in the green flower (GFLJ) and the purple flower (PFLJ) cultivars of L. japonica. Results show GFLJ has green flowers and PFLJ has purple flowers, which are especially remarkable during S3-S4 stages. Accordingly, PFLJ had much higher (>10 times) anthocyanins contents at all the six flower stages than those of GFLJ. Further metabolomic analysis in S3 stage flowers found that most anthocyanins showed increased accumulation, whereas flavones and flavonols showed decreased accumulation in PFLJ compared to GFLJ. Transcriptome analysis identified 21 (85.7 % upregulated) anthocyanin synthase gene DEGs, and 23 MYB transcription factor (TF) DEGs (play essential roles in regulating anthocyanin biosynthesis). In addition, 19 GST and 14 MATE DEGs (play key roles in anthocyanins accumulation) were identified. Further, we found a novel MYB TF (LjAN2) that showed much higher expression in PFLJ. LjAN2 overexpression in tobacco led to purple leaves, and the upregulation of anthocyanin synthase genes (NtCHS and NtANS), as well as increased anthocyanin accumulation. This research offers a comprehensive understanding of the molecular basis of anthocyanin biosynthesis in L. japonica, highlighting its potential applications in the pharmaceutical industry.
引用
收藏
页数:15
相关论文
共 39 条
  • [1] Integrated Transcriptomic and Metabolomic Analyses Reveal the Mechanisms Underlying Anthocyanin Coloration and Aroma Formation in Purple Fennel
    Zhang, Yanjie
    Zhao, Qing
    Feng, Youwei
    Dong, Yuanhang
    Zhang, Tianjiao
    Yang, Qiu
    Gu, Huihui
    Huang, Jinyong
    Li, Yan
    FRONTIERS IN NUTRITION, 2022, 9
  • [2] Integrated Metabolomic and Transcriptomic Analyses Reveal Novel Insights of Anthocyanin Biosynthesis on Color Formation in Cassava Tuberous Roots
    Fu, Lili
    Ding, Zehong
    Tie, Weiwei
    Yang, Jinghao
    Yan, Yan
    Hu, Wei
    FRONTIERS IN NUTRITION, 2022, 9
  • [3] Integrated transcriptomic and metabolomic analyses reveal transcriptional regulatory network for phenolic acid biosynthesis in potato tubers
    Wang, Weilu
    Liu, Zhen
    Qi, Zheying
    Li, Zhitao
    Zhu, Jinyong
    Chen, Limin
    Li, Yuanming
    Bi, Zhenzhen
    Yao, Panfeng
    Sun, Chao
    Liu, Yuhui
    FOOD BIOSCIENCE, 2024, 62
  • [4] Transcriptomic and metabolomic analyses reveal molecular and metabolic regulation of anthocyanin biosynthesis in three varieties of currant
    Wang, Haoyu
    Gang, Huixin
    Chen, Jing
    Liu, Jiale
    Zhang, Xuelin
    Fu, Chunlin
    Shao, Kailin
    Wang, Xueting
    Qin, Dong
    Huo, Junwei
    FOOD RESEARCH INTERNATIONAL, 2024, 196
  • [5] Integrated Transcriptomic and Metabolomic Analysis Reveal the Underlying Mechanism of Anthocyanin Biosynthesis in Toona sinensis Leaves
    Xu, Jing
    Fan, Yanru
    Han, Xiaojiao
    Pan, Huanhuan
    Dai, Jianhua
    Wei, Yi
    Zhuo, Renying
    Liu, Jun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (20)
  • [6] Metabolomic and transcriptomic analyses reveal the effects of self- and hetero-grafting on anthocyanin biosynthesis in grapevine
    Zhong, Haixia
    Liu, Zhongjie
    Zhang, Fuchun
    Zhou, Xiaoming
    Sun, Xiaoxia
    Li, Yongyao
    Liu, Wenwen
    Xiao, Hua
    Wang, Nan
    Lu, Hong
    Pan, Mingqi
    Wu, Xinyu
    Zhou, Yongfeng
    HORTICULTURE RESEARCH, 2022, 9
  • [7] Integrated transcriptomic and metabolomic analyses reveal regulation of terpene biosynthesis in the stems of Sindora glabra
    Yu, Niu
    Chen, Zhaoli
    Yang, Jinchang
    Li, Rongsheng
    Zou, Wentao
    TREE PHYSIOLOGY, 2021, 41 (06) : 1087 - 1102
  • [8] Integrated Physiological and Transcriptomic Analyses Reveal a Regulatory Network of Anthocyanin Metabolism Contributing to the Ornamental Value in a Novel Hybrid Cultivar of Camellia japonica
    Pan, Liqin
    Li, Jiyuan
    Yin, Hengfu
    Fan, Zhengqi
    Li, Xinlei
    PLANTS-BASEL, 2020, 9 (12): : 1 - 14
  • [9] Integrated metabolomic and transcriptomic analyses reveal molecular response of anthocyanins biosynthesis in perilla to light intensity
    Xie, Guanwen
    Zou, Xiuzai
    Liang, Zishan
    Wu, Duan
    He, Jiankuang
    Xie, Kaicheng
    Jin, Honglei
    Wang, Hongbin
    Shen, Qi
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [10] Integrated metabolomic and transcriptomic analyses reveal different metabolite biosynthesis profiles of Juglans mandshurica in shade
    Zhang, Xinxin
    Li, Yuxi
    Yan, Huiling
    Cai, Kewei
    Li, Hanxi
    Wu, Zhiwei
    Wu, Jianguo
    Yang, Xiangdong
    Jiang, Haichen
    Wang, Qingcheng
    Qu, Guanzheng
    Zhao, Xiyang
    FRONTIERS IN PLANT SCIENCE, 2022, 13